原碼、補碼、反碼及移碼


為何要使用原碼, 反碼和補碼

在開始深入學習前, 我的學習建議是先"死記硬背"上面的原碼, 反碼和補碼的表示方式以及計算方法.

現在我們知道了計算機可以有三種編碼方式表示一個數. 對於正數因為三種編碼方式的結果都相同:

                 [+1] = [00000001] = [00000001] = [00000001]

所以不需要過多解釋. 但是對於負數:

                  [-1] = [10000001] = [11111110] = [11111111]

可見原碼, 反碼和補碼是完全不同的. 既然原碼才是被人腦直接識別並用於計算表示方式, 為何還會有反碼和補碼呢?

首先, 因為人腦可以知道第一位是符號位, 在計算的時候我們會根據符號位, 選擇對真值區域的加減. (真值的概念在本文最開頭). 但是對於計算機, 加減乘數已經是最基礎的運算, 要設計的盡量簡單. 計算機辨別"符號位"顯然會讓計算機的基礎電路設計變得十分復雜! 於是人們想出了將符號位也參與運算的方法. 我們知道, 根據運算法則減去一個正數等於加上一個負數, 即: 1-1 = 1 + (-1) = 0 , 所以機器可以只有加法而沒有減法, 這樣計算機運算的設計就更簡單了.

於是人們開始探索 將符號位參與運算, 並且只保留加法的方法. 首先來看原碼:

計算十進制的表達式: 1-1=0

1 - 1 = 1 + (-1) = [00000001] + [10000001] = [10000010] = -2

如果用原碼表示, 讓符號位也參與計算, 顯然對於減法來說, 結果是不正確的.這也就是為何計算機內部不使用原碼表示一個數.

為了解決原碼做減法的問題, 出現了反碼:

計算十進制的表達式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001] + [1000 0001]= [0000 0001] + [1111 1110] = [1111 1111] = [1000 0000] = -0

發現用反碼計算減法, 結果的真值部分是正確的. 而唯一的問題其實就出現在"0"這個特殊的數值上. 雖然人們理解上+0和-0是一樣的, 但是0帶符號是沒有任何意義的. 而且會有

[0000 0000]和[1000 0000]兩個編碼表示0.

於是補碼的出現, 解決了0的符號以及兩個編碼的問題:

1-1 = 1 + (-1) = [0000 0001] + [1000 0001] = [0000 0001] + [1111 1111] = [0000 0000]=[0000 0000]

這樣0用[0000 0000]表示, 而以前出現問題的-0則不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001] + [1111 1111] = [1111 1111] + [1000 0001] = [1000 0000]

-1-127的結果應該是-128, 在用補碼運算的結果中, [1000 0000] 就是-128. 但是注意因為實際上是使用以前的-0的補碼來表示-128, 所以-128並沒有原碼和反碼表示.(對-128的補碼表示[1000 0000]補算出來的原碼是[0000 0000], 這是不正確的)

使用補碼, 不僅僅修復了0的符號以及存在兩個編碼的問題, 而且還能夠多表示一個最低數. 這就是為什么8位二進制, 使用原碼或反碼表示的范圍為[-127, +127], 而使用補碼表示的范圍為[-128, 127].

因為機器使用補碼, 所以對於編程中常用到的32位int類型, 可以表示范圍是: [-231, 231-1] 因為第一位表示的是符號位.而使用補碼表示時又可以多保存一個最小值.

以上轉自:http://www.cnblogs.com/zhangziqiu/archive/2011/03/30/ComputerCode.html

 

總結:

      1、正數的原反補碼都相同;

      2、負數的反碼為原碼除符號位外取反,補碼為反碼+1,移碼為補碼的符號位取反;

      3、0的原反補有兩種表示方法。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM