注:区间估计是除点估计之外的另一类参数估计。相对于点估计只给出一个具体的数值,区间估计能够给出一个估计的范围。 0. 点估计 vs 区间估计 根据具体样本观察值,点估计提供了一个明确的数值。但是这种判断的把握有多大,点估计本身并没有给出。区间估计就是为了弥补点估计的这种不足而提 ...
注:区间估计是除点估计之外的另一类参数估计。相对于点估计只给出一个具体的数值,区间估计能够给出一个估计的范围。 0. 点估计 vs 区间估计 根据具体样本观察值,点估计提供了一个明确的数值。但是这种判断的把握有多大,点估计本身并没有给出。区间估计就是为了弥补点估计的这种不足而提 ...
注:在统计学的应用中,参数估计和假设检验是最重要的两个方面。参数估计是利用样本的信息,对总体的未知参数做估计。是典型的“以偏概全”。 0. 参数及参数的估计 参数是总体分布中的参数,反映的是总体某方面特征的量。例如:合格率,均值,方差,中位数等。参数估计问题是利用从总体抽样得到的信息 ...
1. 贝叶斯之参数估计 1. 贝叶斯之参数估计 1.1. 背景知识 1.2. 最大似然估计(MLE) 1.3. 最大后验概率估计(MAP) 1.4. 贝叶斯估计 1.5. 什么时候 MAP 估计与最大似然估计相等 1.1. ...
注:点估计是参数估计中的一种。点估计常用的方法有两种:矩估计和最大似然估计。之所以要做估计,最本质的问题是我们能获得的信息量(样本的数量)有限,因此只能在有限的信息中,用合理的方法、在可接受的精度或置信度下做近似计算,以便对总体有一个大概的认识,也就是将某种在有限样本中获得的规律,推广到更大的样本 ...
HMM (隐马尔可夫) 推导 (下) - 参数估计 (EM) 回顾 HMM 上篇介绍了HMM这样的一种时序类模型, 即描述了一些观测现象的产生, 是由我们很难观测到的 "隐变量因子", 产生的, 同时这些隐变量因子之间的变化也有一个状态转移概率的过程. HMM 的推导过程, 也就两个部分 ...
1.估计概率密度p(x|wi) (1)贝叶斯决策 (2)P(wi)和p(x | wi)的估计方法 ①先验概率P(wi)估计: 用训练数据中各类出现的频率估计。 依靠经验。 ② 类条件概率密度函数p(x | wi)估计,2类方法: 参数估计:最大似然估计,贝叶斯估计 ...