CNN初探 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7450413.html 前言 这篇博客主要讲解卷积神经 ...
CNN初探 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7450413.html 前言 这篇博客主要讲解卷积神经 ...
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 ...
Dropout是深度学习中的一种防止过拟合手段,在面试中也经常会被问到,因此有必要搞懂其原理。 1 Dropout的运作方式 在神经网络的训练过程中,对于一次迭代中的某一层神经网络,先随机选择中的一些神经元并将其临时隐藏(丢弃),然后再进行本次训练和优化。在下一次迭代中,继续随机隐藏 ...
1. 前言 我们在学习人工智能的时候,不管是机器学习还是深度学习都需要经历一个调参的过程,参数的好坏直接影响这模型效果的好坏。今天我们介绍下在深度学习中,调参的技巧主要分为哪些。 2. 深度学习中 ...
这一篇博客整理用TensorFlow实现神经网络正则化的内容。 深层神经网络往往具有数十万乃至数百万的参数,可以进行非常复杂的特征变换,具有强大的学习能力,因此容易在训练集上过拟合。缓解神经网络的过拟合问题,一般有两种思路,一种是用正则化方法,也就是限制模型的复杂度,比如Dropout、L1 ...
神经网络的拟合能力非常强,通过不断迭代,在训练数据上的误差率往往可以降到非常低,从而导致过拟合(从偏差-方差的角度来看,就是高方差)。因此必须运用正则化方法来提高模型的泛化能力,避免过拟合。 在传统 ...
【前言】Drop Path是NAS中常用到的一种正则化方法,由于网络训练的过程中常常是动态的,Drop Path就成了一个不错的正则化工具,在FractalNet、NASNet等都有广泛使用。 Dropout Dropout是最早的用于解决过拟合的方法,是所有drop类方法的大前辈 ...
学卷积神经网络的理论的时候,我觉得自己看懂了,可是到了用代码来搭建一个卷积神经网络时,我发现自己有太多模糊的地方。这次还是基于MINIST数据集搭建一个卷积神经网络,首先给出一个基本的模型,然后再用Batch Norm、Dropout和早停对模型进行优化;在此过程中说明我在调试代码过程中遇到 ...
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 ...
本文的出发点是一篇期刊论文,但集中探讨的是这篇文章中不确定度估计的原理与过程,行文将与之前的文献报告不同。 原文 Bhattacharyya A , Fritz M , Schiele ...