原文:均值不等式的来龙去脉

前言 简单了解均值不等式的来龙去脉,有助于我们理解和灵活运用其解决问题。 均值不等式 来自百度百科的说明,表达式 H n leq G n leq A n leq Q n 被称为均值不等式,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数,简记为 调几算方 。 已知对于 n 个实数 x ,x , cdots,x n 而言, H n cfrac n sum limi ...

2018-09-09 11:59 0 738 推荐指数:

查看详情

均值不等式详解+证明+例题

均值不等式 定义 均值不等式,同称平均值不等式,也可称为基本不等式。其内容为: \[H_n\leqslant G_n\leqslant A_n\leqslant Q_n \] 即 调和平均数 \(\leqslant\) 几何平均数 \(\leqslant\) 算术平均 ...

Mon Mar 14 00:03:00 CST 2022 0 1511
常见的均值不等式的使用技巧

原文作者wanghai 均值不等式这一素材是高中数学中少见的几个需要同时验证成立的多条件素材。 已知两个正数\(a,b\),则有(当且仅当\(a=b\)时取到等号) \(\color{red}{\cfrac{2}{\cfrac{1}{a}+\cfrac{1}{b}}= \cfrac ...

Sun Nov 20 22:48:00 CST 2016 0 4394
均值不等式的常见使用技巧

前言 均值不等式这一素材,是高中数学中少见的几个需要同时验证成立的多条件素材。由于要多头验证,所以学生很不习惯,感觉很难掌握。 公式内容 已知两个正数\(a,b\),则有\(a+b\geqslant 2\sqrt{ab}\)(当且仅当\(a=b\)时取到等号) 使用条件 ...

Sun Jul 15 22:34:00 CST 2018 2 642
[数学]对数均值不等式

I think, therefore I am. ——Descartes 对数均值不等式 \[\sqrt{x_1x_2}\leq\frac{x_1-x_2}{\ln{x_1}-\ln{x_2}}\leq\frac{x_1+x_2}{2}\ ({x_1},{x_2 ...

Tue Feb 11 04:13:00 CST 2020 0 1606
Jensen 不等式

若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立: \[f(\sum ^{n} _{i=1} \lambda _{i}x_{ ...

Thu Mar 07 06:09:00 CST 2019 0 782
不等式笔记

均值不等式 条件:\(a_i\ge0\)。 平方平均数:\(Q_n=\sqrt{\dfrac{\sum_{i=1}^{n}a_i^2}{n}}\) 算数平均数:\(A_n=\dfrac{\sum_{i=1}^{n}a_i}{n}\) 几何平均数:\(G_n=\sqrt[n]{a_1a_2 ...

Wed Oct 20 19:49:00 CST 2021 0 144
Jensen不等式

(1)定义 设f是定义域为实数的函数,如果对所有的实数x,f(x)的二阶导数都大于0,那么f是凸函数。 Jensen不等式定义如下: 如果f是凸函数,X是随机变量,那么: 。当且仅当X是常量时,该式取等号。其中,E(X)表示X的数学期望。 注:Jensen不等式应用于凹函数时,不等号方向 ...

Tue Mar 01 19:44:00 CST 2022 0 1436
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM