1. 正規變換 1.1 伴隨變換 在上一篇的最后我們看到,滿足一定內積性質的線性變換可以有很好的不變子空間分割,現在對更一般的形式進行討論。設內積空間中有\(V=W\oplus W^{\perp}\),且\(W\)是線性變換\(\mathscr{A}\)的不變子空間,任取\(\alpha ...
一.二次型的概念和變換 .二次型 二次型,顧名思義,是用於研究二次的方程的,這類方程我們在解析幾何中一定見過,如平面空間中的圓錐曲線方程等。這種類型的方程可以寫成矩陣的形式,如下: 為了研究方便,我們經常將這里的x和y寫成x 和x ,如下: 這個就是二次型的矩陣表示,通常,我們為了研究方便,都取矩陣為對稱矩陣。 .二次型矩陣的幾何意義 我們以平面直角坐標系中的圓錐曲線方程為例簡單說一說二次型矩陣的 ...
2022-02-27 21:10 0 1127 推薦指數:
1. 正規變換 1.1 伴隨變換 在上一篇的最后我們看到,滿足一定內積性質的線性變換可以有很好的不變子空間分割,現在對更一般的形式進行討論。設內積空間中有\(V=W\oplus W^{\perp}\),且\(W\)是線性變換\(\mathscr{A}\)的不變子空間,任取\(\alpha ...
「摘自劉二根和謝霖銓主編的《線性代數》」 二次型及其標准型 正定二次型,正定矩陣 ...
一、一般線性變換 1、對於一個典型的線性變換: $y=A\boldsymbol x=\left[ \begin{array}{cc} \boldsymbol w_1 & \boldsymbol w_2\end{array} \right]\left[ \begin{array}{cc ...
一.前言 這是我准備做的線性代數系列正式開始的第一章節,但是我不准備從行列式或者方程開始說起.在我的理解框架中,矩陣是核心內容,行列式和方程等內容都是工具或者待解決的一些問題.因此,我打算直接從矩陣展開自己的理解,在使用到行列式或者和方程有聯系時再切入這些相關內容,因此我直接從矩陣的核心運算 ...
一.初等矩陣 將單位陣E經過一次變換得到的矩陣稱為初等矩陣。初等矩陣都是方陣。這種初等變換有某一行(列)的n倍加到另一行(列)上、互換行列位置、某一行(列)全部乘以某實數三種基本情況。 每一個初等矩陣都可以寫作單位陣左乘或右乘一個矩陣的形式。初等行變換是左乘,初等列變換時右乘,下面 ...
一、行列式性質 二、行列式的運算 1、 2、 3、 4、代數余子式 5、 6、多個A或M相加減 7、 三、矩陣運算(加減、相乘) 1、矩陣加減 2、矩陣相乘 3、矩陣取絕對值 四、轉置、秩 ...
一.概述 在上一篇總結中,主要記錄了矩陣用於線性方程組消元的情況,並且提到:方程組若有唯一解,那么方程組對應系數矩陣的秩(有效的方程個數)一定等於未知數的個數;當方程組中方程的個數多於未知數的個數時,多出來的方程一定可以用其他方程線性表示,因此這些多出來的方程是無效的(當方程組的秩等於未知數 ...
高等代數 5 二次型 二次型 二次型及其矩陣表示 設\(P\)是一數域,一個系數在數域\(P\)中的\(x_1,x_2,\cdots,x_n\)的二次齊次多項式 \[f(x_1,x_2,\cdots,x_n)= a_{11}x_1^2+2a_{12}x_1x_2+ ...