(一)前言 最近,抽樣調查課上$Delta$方法又重出江湖,且老師說它和$Slutsky$定理都很重要,故整理 (二)$Slutsky$定理 敘述:設$X_n\stackrel{d}{\longrightarrow}X,Y_n\stackrel{p}{\longrightarrow}c ...
目錄 極限理論的意義 隨機變量的收斂性 一些定義與記號 依概率收斂 幾乎處處收斂 r階矩收斂 依分布收斂 幾種收斂間的關系 O 和 o 連續映射定理 Slutsky定理 極限理論的意義 極限理論的意義主要在於兩方面: 構造漸進檢驗與漸進置信域 從理論上研究統計過程的效率 例 :考慮對於位置參數的經典t檢驗:給定一個 i.i.d. 的樣本 X ,X , , 均值 mu E X ,我們希望檢驗 H ...
2022-02-26 17:49 0 1499 推薦指數:
(一)前言 最近,抽樣調查課上$Delta$方法又重出江湖,且老師說它和$Slutsky$定理都很重要,故整理 (二)$Slutsky$定理 敘述:設$X_n\stackrel{d}{\longrightarrow}X,Y_n\stackrel{p}{\longrightarrow}c ...
判斷反常積分收斂有四種常用方法: 1、比較判別源法 2、Cauchy判別法 3、Abel判別法 4、Dirichlet 判別法 一 、判斷非負函數反常積分的收斂: 1、比較判別問法 2、Cauchy判別法 二 、判斷一般函數反常積分的收斂: 1、Abel判別法 ...
${\color{Teal} {Ceva定理}}$設$D、E、F$依次為三角形ABC的邊$AB、BC、CA$的內點,記 $λ$=(A,B,D),$μ$=(B,C,E),$v$=(C,A,F) 求證:三條線段$AE、BF、CD$交於一點的充要條件是$λμv$=1 $\textbf{法 ...
中心極限定理 從這里開始直到高斯分布課程結尾的內容皆為選修部分。 這一部分介紹了高斯分布的由來。如果你想深入學習高斯分布背后的理論,那么請繼續。如果你不想,也可以直接跳到機器人定位課程 ...
以下內容來自中科大數學分析教程P73,定理2.4.7 \(函數在x_{0}點的極限的定義\) \(若存在l,\forall \epsilon>0,\exists\delta>0,使得當|x-x_{0}|<\delta\) \(則有|f(x)-l|<\epsilon,即稱l ...
克隆種子容器 克隆已有的PDB 插入一個非CDB數據庫 插入一個以前拔出的PDB 1.克隆種子容器 ...
收斂函數的含義:設數列{Xn},如果存在常數a,對於任意給定的正數q(無論多小),總存在正整數N,使得n>N時,恆有|Xn-a|<q成立,就稱數列{Xn}收斂於a(極限為a),即數列{Xn}為收斂數列(Convergent Sequences)。 論題:若An數列收斂,則極限唯一 ...
美國心理學家Deci Edward L. 和Ryan Richard M. 等人在20世紀80年代提出的一種關於人類自我決定行為的動機過程理論。 自我決定理論把動機分為內部動機(Intrinsic motivation)、外部動機(Extrinsic motivation)和無動機 ...