在第一章中介紹了逆矩陣與奇異矩陣,我們可以通過一個行列式公式計算二維矩陣的逆,那么更多維矩陣的逆如何求解呢? 逆矩陣與方程組 或許用行列式求逆矩陣的做法有些公式化,實際上可以將求逆矩陣看成解方程組: 由此可以通過解方程組的方式求出逆矩陣。 如果一個方陣與另一個非零矩陣 ...
. 矩陣乘法 行列內積 有 m times n 矩陣 boldsymbol A 和 n times p 矩陣 boldsymbol B boldsymbol B 的總行數必須與 boldsymbol A 的總列數相等 ,兩矩陣相乘有 boldsymbol A boldsymbol B boldsymbol C , boldsymbol C 是一個 m times p 矩陣,對於 boldsymb ...
2021-10-04 17:23 0 150 推薦指數:
在第一章中介紹了逆矩陣與奇異矩陣,我們可以通過一個行列式公式計算二維矩陣的逆,那么更多維矩陣的逆如何求解呢? 逆矩陣與方程組 或許用行列式求逆矩陣的做法有些公式化,實際上可以將求逆矩陣看成解方程組: 由此可以通過解方程組的方式求出逆矩陣。 如果一個方陣與另一個非零矩陣 ...
1. 矩陣乘法 如果矩陣 \(B\) 的列為 \(b_1, b_2, b_3\),那么 \(EB\) 的列就是 \(Eb_1, Eb_2, Eb_3\)。 \[\boldsymbol{EB = E[b_1 \quad b_2 \quad b_3] = [Eb_1 \quad Eb_2 ...
本篇為MIT公開課——線性代數 筆記。 矩陣乘法的運算規則 1.行乘列 乘法一般性法則:行乘列得到一個數。 假設有兩個矩陣 \(A、B\) ,並且我們讓 \(A*B=C\), 可以求得矩陣 \(C\) 中 \(i\) 行 \(j\) 列元素: \[C_{\text{ij ...
4.1 關於轉置和取逆的有一些性質 $(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T\boldsymbol{A}^T$ $(\boldsymbol{A}\boldsymbol{B})^{-1} = \boldsymbol{B ...
2.1 消元法 消元法,這個方法最早由高斯提出,也叫高斯消元法:是為了求解線性方程組的。應用消元法求解的時候,通常會應用以下三種變換,並且每一種變換都不會改變方程組的解: 交換方程組中任意兩個方程的位置; 用一個數乘某一個方程的左右兩邊; 將一個方程的兩邊乘一個數然后加到另一 ...
矩陣乘法 A * B = C A,B,C為矩陣,則必須滿足形狀A:m*n,n*k, m*k——A的列數等於B的行數,C的行數等於A的行數,C的列數等於B的列數 則矩陣的乘法定義為: 矩陣C中第i行第j列元素C(i,j)為A中第i行和B中第j列對應元素的乘積 ...
:A + B = B + A 矩陣乘法 兩個矩陣A和B相乘,需要滿足A的列數等於B的行數。 ...
的初等變換可以用矩陣乘法實現,現在的問題是,我們能否得到一個可以表示整個消元過程的矩陣E,使得E與A相乘能夠 ...