在解釋這些概念的關系和意義之前,需要先對這些概念進行逐一的解釋,以方便后續理解。 連續 什么是連續? 光滑就是連續。可光滑又是什么呢?想象有一棟樓,你要在一樓和二樓之間建立一座樓梯,且二層之間的高度差\(H\)保持不變。樓梯階數越多,樓梯越光滑,對吧?也就是每上一階,高度的上升越小 ...
自己在微分學刷題時存在缺陷的地方,主要還是對極限思想和放縮思想掌握不熟練,故把本類題型總結下來,多看多理解。 首先來道例題思路展示: 可根據答案自行嘗試: ...
2020-07-31 18:02 0 2558 推薦指數:
在解釋這些概念的關系和意義之前,需要先對這些概念進行逐一的解釋,以方便后續理解。 連續 什么是連續? 光滑就是連續。可光滑又是什么呢?想象有一棟樓,你要在一樓和二樓之間建立一座樓梯,且二層之間的高度差\(H\)保持不變。樓梯階數越多,樓梯越光滑,對吧?也就是每上一階,高度的上升越小 ...
...
1.二元函數的可偏導** 在二元函數中,一元函數的可導的概念變為可偏導,導函數的概念變為偏導函數,具體看下例: 二元函數f(x,y)對x、y的偏導函數分別為: 在求二元函數的偏導函數時,都是假設另外一個變量為常量,然后對余下那個變量求導數。例如,f(x,y)對x的偏導函數,就是假設y ...
初識高數,對於極限這一章節中對於數列或函數的極限的定義覺得如此啰嗦和復雜,明明一句話可以說清楚的話,非要定義好幾個變量來說明,比如以下關於函數極限的定義: 定義:設函數f(x)在點x0的某一去心鄰域內有定義,如果存在常數a,對於任意給定的正數ε,都$\exists\delta > ...
結論放在前面:連續不一定可導,可導一定連續。 有爭議的是第二點,教科書說的是可導一定連續。 有人提出反例,y=x(x=0無定義),左導數=右導數,所以x=0處可導。 左導數=右導數與可導是充分必要關系。但是!左導數計算時,默認了x=x0處有定義。 所以這個方法證明可導 ...
節選自 汪林《實分析中的反例》 在$[0,1]$上定義函數 $$g(x)=x^{2}\sin \frac{1}{x}, x\neq 0$$ 補充定義$g(0)=0$, 則函數$g(x)$為連續函數,圖形如下。 導函數可求得 $$g'(x)=2x\sin \frac{1}{x ...
...
幾天前,求解二維 Laplace 方程,為了方便,欲用坐標變換把直角坐標化為極坐標。花費了不小的力氣才得到結果,所以就尋思把二階偏導的內容整理一下,便得出此技巧。 發現過程大致如下,整理資料的時候,順手嘗試了這樣一道題目: 解題過程就是普通的求導運算得到的結果是 ...