一、假設條件 不確定性:所有狀態量服從高斯分布,每個狀態量的高斯分布有均值和方差,方差代表不確定性; 相關性:用協方差矩陣描述狀態量間的不確定關系,一個變量可能影響其他變量。為對稱矩陣,其 ...
阿克曼函數 Ackermann 是非原始遞歸函數的例子。它需要兩個自然數作為輸入值,輸出一個自然數。它的輸出值增長速度非常快,僅是對於 , 的輸出已大得不能准確計算。 A m, n left begin array ll n amp m A m , amp m gt , n A m , A m, n amp m gt , n gt end array right. 因為 m 很小,所以我們可以針 ...
2019-08-21 17:05 0 511 推薦指數:
一、假設條件 不確定性:所有狀態量服從高斯分布,每個狀態量的高斯分布有均值和方差,方差代表不確定性; 相關性:用協方差矩陣描述狀態量間的不確定關系,一個變量可能影響其他變量。為對稱矩陣,其 ...
ackerman函數(阿克曼函數,以下簡稱ack函數)是一個雙參數遞歸函數,用遞歸計算代碼如下 int ack(int m,int n) { if (m==0) return n+1; else if (n ...
馬爾可夫決策過程:MDP 一、MDP模型表示 首先引出馬爾可夫決策過程的幾個相關變量集合:A={at},S={st},R={rt+1},t=1,2,...T or ∞。A表示Action,S表示State,R表示Reward,這幾個均是靜態的隨機變量,可以是離散的,也可以是連續 ...
卡爾曼濾波的推導 1 最小二乘法 在一個線性系統中,若\(x\)為常量,是我們要估計的量,關於\(x\)的觀測方程如下: \[y = Hx + v \tag{1.1} \] \(H\)是觀測矩陣(或者說算符),\(v\)是噪音,\(y\)是觀察量 ...
Vx和Sic是ix和Sy的線性函數,可以列出如下的方程: Vx=a1*ix+a2*Sy Sic=a ...
\(\Gamma\)函數的定義 在實數域上伽馬函數定義為: \[\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt(x>0) \] 另外一種寫法: \[\Gamma(x)=2\int_0^{+\infty}t^{2x-1}e ...
基本概念 在項目管理知識體系中,團隊管理是一個非常重要的知識領域,其中有一個非常重要的理論 --- 塔克曼階梯理論。 塔克曼階梯理論把項目團隊發展過程分為五個階段,分別是形成階段(Forming)、震盪階段(Storming)、規范階段(Norming)、成熟階段(Performing ...
官方定義:令 表示一個可測的參數空間, 描述某一個類別的參數。令H是空間 上的一個概率測度, 表示一個正實數。對於空間上的任意一個有限分割 : 如果空間上的一個隨機概率分布G在這個分割中各部分上的測度服從一個狄利克雷分布: , 那么我們就稱隨機概率分布G 服從狄利克雷過程,記為 ...