原文:繞任意單位軸旋轉矩陣計算

http: blog.csdn.net xiajun article details 在三維變換中,經常要用到旋轉變換,而且很多變換是圍繞任意軸的。那么下面就介紹繞任意單位軸旋轉的兩種方法。 假設要旋轉的角度是a,圍繞的軸是r。 方法一: 構建新的基 尋找另外兩條單位長度的坐標軸s t,他們相互垂直,而且與r垂直。這樣r s t組成了一組新基。 具體求s的方法: 找到r中的最小分量,將其設置為 ...

2019-01-31 20:07 0 639 推薦指數:

查看詳情

空間任意旋轉矩陣

其中,(u,v,w)為單位旋轉軸,(a,b,c)為旋轉軸上一點坐標 ...

Tue Jan 07 22:35:00 CST 2020 0 1483
三維空間任意旋轉矩陣的推導

轉載至:https://zhuanlan.zhihu.com/p/56587491 推導如下 設 是三維空間中任意向量,現求 順時針旋轉 所得到的向量 ,其中 是單位向量, , 。 首先求 在 上的投影,記為 , 。 記 為 垂直於 的分量 ...

Thu Dec 16 19:27:00 CST 2021 0 1441
任意旋轉矩陣推導總結

前言 常用的幾何變換中旋轉是較為復雜的一種,最近看《Physically Based Rendering, Second Edition: From Theory To Implementation》一書涉及任意旋轉的實現,也給出了大體思路,但具體的推導過程及最后的旋轉矩陣並未直接地給出 ...

Sun Jul 02 21:49:00 CST 2017 1 12604
任意旋轉

任意旋轉 最終結果 其中(Rx,Ry,Rz)代表任意旋轉軸: ...

Fri Nov 13 01:01:00 CST 2020 0 443
任意旋轉

坐標旋轉 關於最常見的坐標旋轉,可以看看前一篇-幾何變換詳解。 任意旋轉 任意旋轉的情況比較復雜,主要分為兩種情況,一種是平行於坐標的,一種是不平行於坐標的,對於平行於坐標的,我們首先將旋轉軸平移至與坐標重合,然后進行旋轉,最后再平移回去。 將旋轉軸平移 ...

Fri Aug 10 17:20:00 CST 2012 32 73432
任意旋轉的推導

萬丈高樓平地起;勿在浮沙築高台。 暫時放下其他的東西的學習,還不能稱之為學習。潛心研究pbrt,看到第二章任意旋轉一部分,但是只是給了一個大體的推導,最終的推導並沒有給出,所以在此做一下簡單的推導。 給定一個規范化的方向向量a作為旋轉軸,然后使向量v繞着這個旋轉θ度 ...

Fri Apr 27 20:55:00 CST 2012 0 6736
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM