前言 蒟蒻最近准備狂補數學啦TAT 基於篩素數,可以同時快速求出歐拉函數。於是蒟蒻准備從這里入手,整理一下實現的思路。 篩素數及其一種改進寫法 傳統篩素數的做法(埃式篩)是,利用已知的素數,去篩掉含有此質因子的合數,十分巧妙。由於不是本文的重點,就只貼一下代碼吧 復雜度不會證 ...
歐拉系列 歐拉函數:phi i 表示 i 中與 i 互質的數的個數。 利用這個定義就可以在篩素數的同時,求出歐拉函數。 設 歐拉函數 為 phi x , p 為素數: 如果 i p ,那么 phi i p phi i p。 顯然,與 i 互質的每一個數都與 i p 互質。 如果 i p , 那么 phi i p phi i p 。 因為 i 與 p 互質,根據積性函數的性質,得 phi i p p ...
2018-08-18 20:04 0 827 推薦指數:
前言 蒟蒻最近准備狂補數學啦TAT 基於篩素數,可以同時快速求出歐拉函數。於是蒟蒻准備從這里入手,整理一下實現的思路。 篩素數及其一種改進寫法 傳統篩素數的做法(埃式篩)是,利用已知的素數,去篩掉含有此質因子的合數,十分巧妙。由於不是本文的重點,就只貼一下代碼吧 復雜度不會證 ...
歐拉篩 質數篩 也稱線性篩 它比時間復雜度為 \(O(n\log\log n)\) 的埃氏篩更優,因為埃氏篩會有篩重。 歐拉篩保證每個合數只會被它的最小質因數篩掉,所以每個數只會被篩一次。 時間復雜度 \(O(n)\) 歐拉函數篩 特殊地,對於一個質數 \(p ...
昨天的考試跪的一塌糊塗:第一題水過,第二題帶WA的朴素,最后題忘了特判左端點全跪,分數比起預計得分整整打了個對折啊! 步入正題:線性篩(歐拉篩) 一般的篩法(PPT里叫埃拉托斯特尼篩法,名字異常高貴)的效率是O(NlglgN)(其實很接近O(n)啊!),對於一些例如N=10000000的殘暴 ...
蒟蒻要開始打數論模板了。 歐拉函數:小於n且與n互素的數個數,記為φ(n) 它有這樣幾個優越的性質:轉自https://yq.aliyun.com/articles/15314 1. phi(p) == p-1 因為素數p除了1以外的因子只有p,所以與 p 互素的個數是 p ...
目錄 Bases 篩法 Code View Bases 這里給出的篩法是以線性篩素數的方法為基礎的。 利用了歐拉函數是積性函數的性質:對於任意互質的數\(a\),\(b\),有\(f(a*b)=f(a)*f(b)\) 篩法 類比於線性篩素數 ...
題面 饅頭卡最近在研究數學,她從八尺深的腦洞里掏出來一個這樣的函數,這個函數的定義域為 \(N^*\),值域也是 \(N^*\),並且這個函數 \(f()\) 對任意正整數 \(n\) 滿足: \[\sum_{d|n}f(d) = n \] 包子卡看了之后表示不服,認為數學不好的饅頭 ...
也許更好的閱讀體驗 歐拉函數 定義 歐拉函數是 小於等於 x的數中與x 互質 的數的 數目 符號\(\varphi(x)\) 互質 兩個互質的數的最大公因數等於1,1與任何數互質 通式 \(\varphi(x)=x\prod_{i=1}^n(1-\frac{1}{p_i ...
歐拉函數 \(\varphi(n) \ or \ \phi(n)\) 表示小於n的正整數與n互質的數的個數. 性質: 當n為質數時 \(\varphi(n)=n-1\) 當n為奇數時 \(\varphi(2n) = \varphi(n)\) 證明: \(\because\)歐拉函數為積性函數 ...