原文:多變量微積分筆記1——偏導數

在一元函數中,我們已經知道導數就是函數的變化率。對於二元函數我們同樣要研究它的 變化率 。 在xOy平面內,當動點由P x ,y 沿不同方向變化時,函數f x,y 的變化快慢一般說來是不同的,因此就需要研究f x,y 在 x ,y 點處沿不同方向的變化率。 在這里我們只學習函數f x,y 沿着平行於x軸和平行於y軸兩個特殊方位變動時,f x,y 的變化率。 偏導數的表示符號為: ,全導數符號d的 ...

2018-01-15 20:31 0 6781 推薦指數:

查看詳情

多變量微積分筆記5——梯度與方向導數

  梯度一詞有時用於斜度,也就是一個曲面沿着給定方向的傾斜程度。   梯度的本意是一個向量(矢量),表示某一函數在該點處的方向導數沿着該方向取得最大值,即函數在該點處沿着該方向(此梯度的方向)變化最快,變化率最大(為該梯度的模)。   在單變量的實值函數的情況,梯度只是導數,或者,對於一個線性 ...

Fri Feb 02 18:07:00 CST 2018 0 4491
多變量微積分筆記17——通量

  在流體運動中,通量是單位時間內流經某單位面積的某屬性量,是表示某屬性量輸送強度的物理量。在大氣科學中,包含動量通量、熱通量、物質通量和水通量。   本章關於向量和點積的相關知識課參考《線性代數筆記3——向量2(點積)》。 通量   通量實際上是一種線積分。如果有一條平面曲線C和這個平面 ...

Fri May 04 02:48:00 CST 2018 2 3708
多變量微積分筆記8——二重積分

  二重積分是二元函數在空間上的積分,同定積分類似,是某種特定形式的和的極限。本質是求曲頂柱體體積。重積分有着廣泛的應用,可以用來計算曲面的面積,平面薄片重心等。平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分,稱為曲面積分。   本篇涉及到的單變量積分的知識可參考《數學筆記13 ...

Fri Mar 09 19:54:00 CST 2018 2 6439
變量微積分筆記4——導數4(反函數的導數

什么是反函數   一般地,設函數y=f(x)(x∈A)的值域是C,若找得到一個函數g(y)在每一處g(y)都等於x,這樣的函數x= g(y)(y∈C)叫做函數y=f(x)(x∈A)的反函數,記作y= ...

Thu Sep 07 13:49:00 CST 2017 1 1557
多變量微積分筆記13——線積分

   線積分或路徑積分積分的一種。在數學中,線積分積分函數的取值沿的不是區間,而是特定的曲線,稱為積分路徑。在物理學上,線積分是質點在外力作用下運動一段距離后總功。 線積分   在物理學上,力所做的功等於力與位移的乘積;更嚴格地說,力在足夠小的距離上做的功等於力的向量與位移向量的點積 ...

Thu Apr 12 15:47:00 CST 2018 0 4696
多變量微積分筆記24——空間線積分

  線積分或路徑積分積分的一種。在數學中,線積分積分函數的取值沿的不是區間,而是特定的曲線,稱為積分路徑。在物理學上,線積分是質點在外力作用下運動一段距離后總功。   如果把空間向量場F = Pi + Qj + Rk看作力場,C是質點在力場作用下移動的曲線,那么C在力場中線積分就是質點在力作 ...

Fri Jun 22 02:40:00 CST 2018 0 946
變量微積分筆記1——導數1(導數的基本概念)

什么是導數   導數是高數中的重要概念,被應用於多種學科。   從物理意義上講,導數就是求解變化率的問題;從幾何意義上講,導數就是求函數在某一點上的切線的斜率。   我們熟知的速度公式:v = s/t,這求解的是平均速度,實際上往往需要知道瞬時速度:   當t趨近於t0,即t-t0 ...

Mon Aug 28 05:31:00 CST 2017 2 2302
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM