Minitab 控制圖



Minitab 控制圖官方文檔


一、數據

數據:

數據1 數據2 數據3 子組ID
601.4 598 601.6 1
601.6 599.8 600.4 1
598 600 598.4 1
601.4 599.8 600 1
599.4 600 596.8 1
600 600 602.8 2
600.2 598.8 600.8 2
601.2 598.2 603.6 2
598.4 599.4 604.2 2
599 599.6 602.4 2
601.2 599.4 598.4 3
601 599.4 599.6 3
600.8 600 603.4 3
597.6 598.8 600.6 3
601.6 599.2 598.4 3
599.4 599.4 598.2 4
601.2 599.6 602 4
598.4 599 599.4 4
599.2 599.2 599.4 4
598.8 600.6 600.8 4
601.4 598.8 600.8 5
599 598.8 598.6 5
601 599.8 600 5
601.6 599.2 600.4 5
601.4 599.4 600.8 5
601.4 600 600.8 6
598.8 600.2 597.2 6
601.4 600.2 600.4 6
598.4 599.6 599.8 6
601.6 599 596.4 6
598.8 599 600.4 7
601.2 599.8 598.2 7
599.6 600.8 598.6 7
601.2 598.8 599.6 7
598.2 598.2 599 7
598.8 600 598.2 8
597.8 599.2 599.4 8
598.2 599.8 599.4 8
598.2 601.2 600.2 8
598.2 600.4 599 8
601.2 600.2 599.4 9
600 599.6 598 9
598.8 599.6 597.6 9
599.4 599.6 598 9
597.2 600.2 597.6 9
600.8 599.2 601.2 10
600.6 599 599 10
599.6 599.6 600.4 10
599.4 600.4 600.6 10
598 600 599 10
600.8 599 602.2 11
597.8 599.6 599.8 11
599.2 599.4 599.8 11
599.2 599.2 601 11
600.6 597.8 601.6 11
598 600.4 601.6 12
598 599.6 600.2 12
598.8 600 601.8 12
601 600.8 601.2 12
600.8 600.4 597.6 12
598.8 599.4 599.8 13
599.4 599 602.8 13
601 598.4 600 13
598.8 599 599.6 13
599.6 599.6 602.2 13
599 598.8 603.8 14
600.4 599.2 603.6 14
598.4 599.6 601.8 14
602.2 598.6 602 14
601 599.8 603.6 14
601.4 599.6 600.8 15
601 599.2 600.2 15
601.2 599.6 600.4 15
601.4 600.2 600.2 15
601.8 599.8 602.2 15
601.6 599.6 598 16
601 600 598.4 16
600.2 599.6 600.8 16
599 599.2 602.8 16
601.2 598.6 597.6 16
601.2 599.6 601.6 17
601.2 601.2 603.4 17
601.2 599.6 597 17
601 600.2 599.8 17
601 600 597.8 17
601.4 600 602.4 18
601.4 599.4 602.2 18
598.8 599.8 600.6 18
598.8 599.2 596.2 18
598.8 599.6 602.4 18
598.2 599.4 601.4 19
601.8 600 599.2 19
601 600 601.6 19
601.4 599.2 600.4 19
601.4 599.4 598 19
599 599.6 601.2 20
601.4 599.8 604.2 20
601.8 599 600.2 20
601.6 599.6 600 20
601.2 599.4 596.8 20

數據4:

子組ID PH值
1 6.05
2 5.99
3 6.11
4 6.13
5 5.87
6 6.05
7 6.23
8 6.49
9 6.15
10 5.89
11 5.87
12 5.99
13 6.07
14 6.17
15 5.86
16 6.07
17 6.01
18 5.87
19 5.66
20 5.58
21 5.62
22 5.89
23 6.02
24 5.93
25 6.05

數據5:

子組ID \(x_1\) \(x_2\) \(x_3\)
1 1.504 4.075 1.971
2 1.685 4.599 2.26
3 1.529 4.1 1.994
4 1.554 4.19 2.024
5 1.604 4.275 2.063
6 1.664 4.341 2.12
7 1.789 4.981 2.287
8 1.723 4.416 2.166
9 1.831 5.196 2.285
10 1.622 4.353 2.135
11 1.683 4.396 2.154
12 1.598 4.329 2.18
13 1.847 5.168 2.331
14 1.793 4.547 2.184
15 1.886 5.259 2.389
16 1.631 4.338 2.073
17 1.543 4.204 2.151
18 1.665 4.48 2.282
19 1.578 4.349 2.128
20 1.533 4.28 2.039
21 1.674 4.504 2.192
22 1.749 4.371 2.155
23 1.83 5.094 2.436
24 1.813 4.989 2.428
25 1.73 4.396 2.16


二、控制限

  • 子組變量控制圖的 n>1

  • w 的取值范圍 [2, 100]

1. Xbar-R 控制圖的樣本均值圖

\(UCL\ =\ \mu\ +\ k\frac{\sigma}{\sqrt{n_i}}\)

\(CL\ =\ \mu\ =\ \bar{X}\)

\(LCL\ =\ \mu\ -\ k\frac{\sigma}{\sqrt{n_i}}\)

\(\sigma\ =\ \frac{Rbar}{d_2(n_i)}\)


\(μ = \bar{X}\):過程均值

\(k\):檢驗 1 的參數,默認為 3

\(n_{i}\):子組 i 的觀測值個數

\(Rbar\):子組極差的均值

\(d_2\left(n_i\right)\):與括號中指定的值相對應的無偏常量 \(d_2\)

\(d_{2}(n_i)=3.4873+0.0250141 \times n_i-0.00009823 \times n_i^{2}\ \ \ \ n_i\in[51,100]\)


實例:數據1

\[\begin{aligned} & ptp=[3.6,2.8,4.0,2.8,2.6,...,2.6,3.6,2.8] \\ & Rbar=\frac{3.6+2.8+4.0...+2.6+3.6+2.8}{20}=2.72 \\ & d_2(n_i)=d_2(5)=2.326 \\ & \sigma=\frac{Rbar}{d_2(n_i)}=1.169 \end{aligned} \]


2. Xbar-S 控制圖的樣本均值圖

\(UCL\ =\ \mu\ +\ k\frac{\sigma}{\sqrt{n_i}}\)

\(CL\ =\ \mu\ =\ \bar{X}\)

\(LCL\ =\ \mu\ -\ k\frac{\sigma}{\sqrt{n_i}}\)

\(\sigma\ =\ \frac{Sbar}{C_4(n_i)}\)


\(μ = \bar{X}\):過程均值

\(k\):檢驗 1 的參數,默認為 3

\(n_{i}\):子組 i 的觀測值個數

\(Sbar\):子組標准差的均值

\(C_4(·)\):與括號指定的值相對應的無偏常量 \(C_4\) 值。計算公式為:\(C_4(N)\ =\ \sqrt{\frac{2}{N-1}}\frac{\gamma(\frac{N}{2})}{\gamma(\frac{N-1}{2})}\)


實例:數據1

\[\begin{aligned} & std=[1.596,1.090,1.615,...,1.459,1.140] \\ & Sbar=\frac{1.596+1.090+1.615+...+1.459+1.140}{20}=1.148 \\ & C_4(n_i)=C_4(5)=0.940 \\ & \sigma=\frac{Sbar}{C_4(n_i)}=1.221 \end{aligned} \]


3. Xbar 控制圖

\(UCL\ =\ \mu\ +\ k\frac{\sigma}{\sqrt{n_i}}\)

\(CL\ =\ \mu\ =\ \bar{X}\)

\(LCL\ =\ \mu\ -\ k\frac{\sigma}{\sqrt{n_i}}\)

\(\sigma\ =\ \frac{\sqrt{\mu_v}}{C_4(d+1)}\)


\(μ = \bar{X}\):過程均值

\(k\):檢驗 1 的參數,默認為 3

\(n_{i}\):子組 i 的觀測值個數

\(\mu_v\):子組方差的均值

\(C_4(·)\):與括號指定的值相對應的無偏常量 \(C_4\)值。計算公式為:\(C_4(N)\ =\ \sqrt{\frac{2}{N-1}}\frac{\gamma(\frac{N}{2})}{\gamma(\frac{N-1}{2})}\)

\(d\):自由度。計算公式為:\(\sum{(n_i\ -\ 1})\)


實例:數據1

\[\begin{aligned} & var=[2.548,1.188,2.608,..., 2.128, 1.300] \\ & \mu_v=\frac{2.548+1.188+2.608+...+2.128+1.300}{20}=1.503 \\ & C_4(d+1)=C_4(m\times\ (n_i-1)+1)=C_4(20\times\ (5-1)+1)=0.997 \\ & \sigma=\frac{\sqrt\mu_v}{C_4(d+1)}=1.230 \end{aligned} \]


4. R 控制圖

\(UCL\ =\ \mu_R\ +\ k\sigma\)

\(CL\ =\ \mu_R\ =\ Rbar\)

\(LCL\ =\ \mu_R\ -\ k\sigma\)

\(\sigma\ =\ \frac{d_3\left(n_i\right)}{d_2\left(n_i\right)}·Rbar\)


\(μ_R = Rbar\):子組極差的均值

\(k\):檢驗 1 的參數,默認為 3

\(n_{i}\):子組 i 的觀測值個數

\(d_2\left(n_i\right)\):與括號中指定的值相對應的無偏常量 \(d_2\)

\(d_3\left(n_i\right)\):與括號中指定的值相對應的無偏常量 \(d_3\)

\(d_{2}(n_i)=3.4873+0.0250141 \times n_i-0.00009823 \times n_i^{2}\ \ \ \ n_i\in[51,100]\)

\(d_{3}(n_i)=0.80818-0.0051871 \times n_i-0.00049243 \times n_i^{3}\ \ \ \ n_i\in[51,100]\)


實例:數據1

\[\begin{aligned} & ptp=[3.6,2.8,4.0,2.8,2.6,...,2.6,3.6,2.8] \\ & Rbar=\frac{3.6+2.8+4.0...+2.6+3.6+2.8}{20}=2.72 \\ & d_2(n_i)=d_2(5)=2.326 \\ & d_3(n_i)=d_2(5)=0.8641 \\ & \sigma=\frac{d_3(n_i)}{d_2(n_i)}\times\ Rbar=1.010 \end{aligned} \]


5. S 控制圖

\(UCL\ =\ \mu_S\ +\ k\sigma\)

\(CL\ =\ \mu_S\ =\ Sbar\)

\(LCL\ =\ \mu_S\ -\ k\sigma\)

\(\sigma\ =\ \frac{C_5\left(n_i\right)}{C_4\left(n_i\right)}·Sbar\)


\(μ_S = Sbar\):子組標准差的均值

\(k\):檢驗 1 的參數,默認為 3

\(n_{i}\):子組 i 的觀測值個數

\(C_4(·)\):與括號指定的值相對應的無偏常量 \(C_4\) 值。計算公式為:\(C_4(N)\ =\ \sqrt{\frac{2}{N-1}}\frac{\gamma(\frac{N}{2})}{\gamma(\frac{N-1}{2})}\)

\(C_5(·)\):與括號指定的值相對應的無偏常量 \(C_5\) 值。計算公式為:\(C_5(N)\ =\ \sqrt{1-{C_4(N)}^2}\)


實例:數據1

\[\begin{aligned} & std=[1.596,1.090,1.615,...,1.459,1.140] \\ & Sbar=\frac{1.596+1.090+1.615+...+1.459+1.140}{20}=1.148 \\ & C_4(n_i)=C_4(5)=0.940 \\ & C_5(n_i)=C_5(5)=0.341 \\ & \sigma=\frac{C_5(n_i)}{C_4(n_i)}\times Sbar=0.417 \end{aligned} \]


6. 單值控制圖

\(UCL\ =\ \mu\ +\ \frac{k\sigma}{\sqrt{n_i}}\ =\ \bar{X}\ +\ k\frac{\bar{R}}{d_2(w)}\)

\(CL\ =\ \mu\ =\ \bar{X}\)

\(LCL\ =\ \mu\ -\ \frac{k\sigma}{\sqrt{n_i}}\ =\ \bar{X}\ -\ k\frac{\bar{R}}{d_2(w)}\)

\(\sigma\ =\ \frac{\bar{R}}{d_2(w)}\)


\(μ = \bar{X}\):過程均值

\(k\):檢驗 1 的參數,默認為 3

\(n_i\):子組 i 的觀測值個數,取值為 1

\(w\):移動極差長度,默認為 2

\(\bar{R}\):移動極差的均值

\(d_2\left(n_i\right)\):與括號中指定的值相對應的無偏常量 \(d_2\)


實例:數據4

\[\begin{aligned} & ptp=[0.06,0.12,0.02,...,0.09,0.12] \\ & \bar{R}=\frac{0.06+0.12+0.02+...+0.09+0.12}{24}=0.152 \\ & d_2(w)=d_2(2)=1.128 \\ & \sigma=\frac{\bar{R}}{d_2(w)}=0.135 \end{aligned} \]


7. 移動極差控制圖

\(UCL\ =\ \bar{R}\ +\ k\sigma_R\ =\ \bar{R}+\ k\frac{d_3(w)}{d_2(w)}\bar{R}\)

\(CL\ =\ \bar{R}\)

\(LCL\ =\ \bar{R}\ -\ k\sigma_R\ =\ \bar{R}-\ k\frac{d_3(w)}{d_2(w)}\bar{R}\)

\(\sigma\ =\ \frac{\bar{R}}{d_2(w)}\)

\(\sigma_R\ =\ d_3(w)\sigma\ =\ \frac{d_3(w)}{d_2(w)}\bar{R}\)


\(k\)​:檢驗 1 的參數,默認為 3

\(w\):移動極差長度,默認為 2

\(\bar{R}\):移動極差的均值

\(d_2\left(n_i\right)\):與括號中指定的值相對應的無偏常量 \(d_2\)

\(d_3\left(n_i\right)\):與括號中指定的值相對應的無偏常量 \(d_3\)


實例:數據4

\[\begin{aligned} & ptp=[0.06,0.12,0.02,...,0.09,0.12] \\ & \bar{R}=\frac{0.06+0.12+0.02+...+0.09+0.12}{24}=0.152 \\ & d_2(w)=d_2(2)=1.128 \\ & d_3(w)=d_3(2)=0.8525 \\ & \sigma=\frac{\bar{R}}{d_2(w)}=0.135 \\ & \sigma_R=d_3(w)\sigma=\frac{d_3(w)}{d_2(w)}\times \bar{R}=0.115 \end{aligned} \]


8. MA 控制圖

\(n_i>1\)時:

\(i<mv\)

\(UCL = \mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}\)

\(LCL = \mu\ -\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}\)

\(i≥mv\)

\(UCL= \mu\ +\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}\)

\(LCL= \mu\ -\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}\)

\(\sigma\ =\ \frac{\sqrt{\mu_v}}{C_4(d+1)}\)


\(n_i=1\)

\(i<mv\)

\(UCL = \mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}\)

\(LCL = \mu\ -\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}\)

\(i≥mv\)

\(UCL= \mu\ +\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}\)

\(LCL= \mu\ -\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}\)

\(\sigma\ =\ \frac{\bar{R}}{d_2(w)}\)


\(i\)​:遍歷子組個數的取值(不是子組的觀測值個數

\(mv\):移動均值長度,默認為3​


實例:

數據1:\(n_i>1\)

\[\begin{aligned} \sigma=\frac{\sqrt{\mu_v}}{C_4(d+1)}=1.230 \\ \\ ①\ i<mv: \\ & UCL_1=\mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}=600.072+3(\frac{1.230}{1})\sqrt{\frac{1}{5}}=601.722 \\ & UCL_2=\mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}=600.072+3(\frac{1.230}{2})\sqrt{\frac{2}{5}}=601.239 \\ ②\ i≥mv: \\ & UCL_4=\mu\ +\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}=600.072+3(\frac{1.230}{3})\sqrt{\frac{3}{5}}=601.024 \\ \end{aligned} \]

數據4:\(n_i=1\)

\[\begin{aligned} \sigma=\frac{\bar{R}}{d_2(w)}=0.135 \\ \\ ①\ i<mv: \\ & UCL_1=\mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}=5.985+3(\frac{0.135}{1})\sqrt{\frac{1}{1}}=6.390 \\ & UCL_2=\mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}=5.985+3(\frac{0.135}{2})\sqrt{\frac{2}{1}}=6.272 \\ ②\ i≥mv: \\ & UCL_4=\mu\ +\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}=5.985+3(\frac{0.135}{3})\sqrt{\frac{3}{1}}=6.219 \\ \end{aligned} \]


9. EWMA 控制圖

\(n_i>1\) 時:

\(UCL\ =\ \mu\ +\ k\sigma_Z\ = \mu\ +\ k\frac{\sigma}{\sqrt{n_i}}\sqrt{(\frac{r}{2-r})\left[1-\left(1-r\right)^{2i}\right]}\)

\(CL\ =\ \mu\ =\ \bar{X}\)

\(LCL\ =\ \mu\ -\ k\sigma_Z\ = \mu\ -\ k\frac{\sigma}{\sqrt{n_i}}\sqrt{(\frac{r}{2-r})\left[1-\left(1-r\right)^{2i}\right]}\)

\(\sigma\ =\ \frac{\sqrt{\mu_v}}{C_4(d+1)}\)


\(n_i=1\)

\(UCL\ =\ \mu\ +\ k\sigma_Z\ = \mu\ +\ k\frac{\sigma}{\sqrt{n_i}}\sqrt{(\frac{r}{2-r})\left[1-\left(1-r\right)^{2i}\right]}\)

\(CL\ =\ \mu\ =\ \bar{X}\)

\(LCL\ =\ \mu\ -\ k\sigma_Z\ = \mu\ -\ k\frac{\sigma}{\sqrt{n_i}}\sqrt{(\frac{r}{2-r})\left[1-\left(1-r\right)^{2i}\right]}\)

\(\sigma\ =\ \frac{\bar{R}}{d_2(w)}\)


\(r\)​:EWMA權重,默認為0.2


實例:

數據1:\(n_i>1\)

\[\begin{aligned} \sigma=\frac{\sqrt{\mu_v}}{C_4(d+1)}=1.230 \\ & UCL_1=600.072+3\times \frac{1.230}{\sqrt{5}}\sqrt{(\frac{0.2}{2-0.2})[1-(1-0.2)^{2}]}=600.402 \\ & UCL_1=600.072+3\times \frac{1.230}{\sqrt{5}}\sqrt{(\frac{0.2}{2-0.2})[1-(1-0.2)^{4}]}=600.495 \\ \end{aligned} \]

數據4:\(n_i=1\)

\[\begin{aligned} \sigma=\frac{\bar{R}}{d_2(w)}=0.135 \\ & UCL_1=5.985+3\times \frac{0.135}{\sqrt{1}}\sqrt{(\frac{0.2}{2-0.2})[1-(1-0.2)^{2}]}=6.066 \\ & UCL_1=5.985+3\times \frac{0.135}{\sqrt{1}}\sqrt{(\frac{0.2}{2-0.2})[1-(1-0.2)^{4}]}=6.089 \\ \end{aligned} \]


10. T方控制圖

子組中的數據:數據1、數據2

\(UCL = \frac{p(m-1)(n-1)}{mn-m-p+1}F(1-p\alpha,\ p,\ mn-m-p+1)\)

\(LCL = 0\)

單個觀測值:數據4

\(UCL=\frac{(m-1)^2}{m}\beta(1-\alpha,\ \frac{p}{2},\ \frac{m-p-1}{2})\)

\(LCL=0\)


\(\alpha\):固定值 \(0.00135\)

\(p\)​:特征數

\(m\):樣本數

\(n\):樣本大小

\(F\):F 分布 f.ppf(1-p*σ, p, m*n-m-p+1)

\(\beta\):beta 分布 beta.ppf(1-σ, p/2, (m-p-1)/2)



三、描繪點

1. xbar 控制圖

數據1:

第一個描繪點:

\(\frac{601.4+601.6+598.0+601.4+599.4}{5} = 600.36\)

第二個描繪點:

\(\frac{600.0+600.2+601.2+598.4+599.0}{5} = 599.76\)

第三個描繪點:

\(\frac{601.2+601.0+600.8+597.6+601.6}{5} = 600.44\)

第四個描繪點:

\(\frac{599.4+601.2+598.4+599.2+598.8}{5} = 599.4\)


2. S 控制圖

數據1:

第一個描繪點:

\(\sqrt[2]\frac{[(601.4-600.36)^2+(601.6-600.36)^2+(598.0-600.36)^2+(601.4-600.36)^2+(599.4-600.36)^2]}{4} = 1.596\)

第二個描繪點:

\(\sqrt[2]\frac{[(600-599.76)^2+(600.2-599.76)^2+(601.2-599.76)^2+(598.4-599.76)^2+(599-599.76)^2]}{4} = 1.090\)

第三個描繪點:

\(\sqrt[2]\frac{[(601.2-600.44)^2+(601-600.44)^2+(600.8-600.44)^2+(597.6-600.44)^2+(601.6-600.44)^2]}{4} = 1.615\)

第四個描繪點:

\(\sqrt[2]\frac{[(599.4-599.4)^2+(601.2-599.4)^2+(598.4-599.4)^2+(599.2-599.4)^2+(598.8-599.4)^2]}{4} = 1.077\)


3. R 控制圖

數據1:

第一個描繪點:\(601.6-598 = 3.6\)

第二個描繪點:\(601.2-598.4 = 2.8\)

第三個描繪點:\(601.6-597.6 = 4\)


4. 單值控制圖

數據1、數據4:就是原始數據


5. 移動極差控制圖

數據1:

第二個描繪點:\(601.6-601.4 = 0.2\)

第三個描繪點:\(601.6-598 = 3.6\)

第四個描繪點:\(601.4-598 = 3.4\)

數據4:

第二個描繪點:\(6.05-5.99=0.06\)

第三個描繪點:\(6.11-5.99 = 0.12\)

第四個描繪點:\(6.13-6.11 = 0.02\)


6. MA 控制圖

數據1:

第一個描繪點:

\(\frac{601.4+601.6+598.0+601.4+599.4}{5} = 600.36\)

第二個描繪點:

\(\frac{\frac{601.4+601.6+598.0+601.4+599.4}{5}+\frac{600.0+600.2+601.2+598.4+599.0}{5}}{2} = 600.06\)

第三個描繪點:

\(\frac{\frac{601.4+601.6+598.0+601.4+599.4}{5}+\frac{600.0+600.2+601.2+598.4+599.0}{5}+\frac{601.2+601.0+600.8+597.6+601.6}{5}}{mv} = 600.1876\)

第四個描繪點:

\(\frac{\frac{600.0+600.2+601.2+598.4+599.0}{5}+\frac{601.2+601.0+600.8+597.6+601.6}{5}+\frac{599.4+601.2+598.4+599.2+598.8}{5}}{mv} = 600.1876\)

數據4:

第一個描繪點:\(6.05\)

第二個描繪點:\(\frac{6.05+5.99}{2}=6.02\)

第三個描繪點:\(\frac{6.05+5.99+6.11}{mv}=6.05\)

第四個描繪點:\(\frac{5.99+6.11+6.13}{mv}=6.0767\)


7. EWMA 控制圖

數據1:

第一個描繪點中的np.mean(datas)是對所有值求平均。

除第一個描繪點外,其他描繪點的計算都與上一個描繪點有關。

第一個描繪點:\(r\times\frac{601.4+601.6+598.0+601.4+599.4}{5}+(1-r)\times(np.mean(datas))=600.130\)

第二個描繪點:\(r\times\frac{600.0+600.2+601.2+598.4+599.0}{5}+(1-r)\times600.13=600.056\)

第三個描繪點:\(r\times\frac{601.2+601.0+600.8+597.6+601.6}{5}+(1-r)\times600.056=600.133\)

第四個描繪點:\(r\times\frac{599.4+601.2+598.4+599.2+598.8}{5}+(1-r)\times600.133=599.986\)

數據4:

第一個描繪點:\(r\times6.05+(1-r)\times(np.mean(datas))=5.9978\)

第二個描繪點:\(r\times5.99+(1-r)\times5.9978=5.9963\)

第三個描繪點:\(r\times6.11+(1-r)\times5.9963=6.0190\)

第四個描繪點:\(r\times6.13+(1-r)\times6.1090=6.0412\)


8. T方控制圖

數據1、數據2:

子組ID \(\overline{x}_1\)​(數據1)​ \(\overline{x}_2\)​(數據2)​​​ \(s_{11}\) \(s_{12}\) \(s_{22}\) 統計量 \(T_i^2\)
1 600.36 599.52 2.548 -0.634 0.732 0.281
2 599.76 599.2 1.188 -0.500 0.500 2.283
3 600.44 599.36 2.608 0.422 0.188 0.919
4 599.4 599.56 1.160 0.020 0.388 1.505
5 600.88 599.2 1.152 0.180 0.180 3.734
6 600.32 599.8 2.492 -0.150 0.260 1.238
7 599.8 599.32 1.880 0.440 1.012 1.104
8 598.24 600.12 0.128 0.074 0.552 15.115
9 599.32 599.84 2.192 -0.036 0.108 2.961
10 599.68 599.64 1.252 -0.474 0.328 0.605
11 599.52 599. 1.492 -0.630 0.500 5.907
12 599.32 600.24 2.192 0.484 0.208 8.639
13 599.52 599.08 0.812 -0.282 0.212 4.623
14 600.2 599.2 2.340 -0.240 0.260 1.852
15 601.36 599.68 0.088 0.064 0.132 5.993
16 600.6 599.4 1.060 0.050 0.280 1.185
17 601.12 600.12 0.012 0.002 0.432 9.281
18 599.84 599.6 2.028 0.130 0.100 0.209
19 600.76 599.6 2.128 0.160 0.140 1.662
20 601 599.48 1.300 -0.110 0.092 2.886
均值 \(\overline{\overline{x}}_1\)=600.072 \(\overline{\overline{x}}_2\)=599.548​ \(\overline{\overline{s}}_{11}\)=1.5026 \(\overline{\overline{s}}_{12}\)= -0.0515 \(\overline{\overline{s}}_{22}\)=0.3302

① 樣本均值的均值:

\(\overline{\overline{x}}=(\overline{\overline{x}}_1,\ \overline{\overline{x}}_2)'=(600.072,\ 599.548)'\)


② 樣本協方差:\(m=20, n=5\)

\(\begin{aligned} & x=[601.4,601.6,598.0,601.4,599.4] \\ & y=[598.0,599.8,600.0,599.8,600.0] \\ & \overline{x}=600.36 \\ & \overline{y}=599.52 \\ \end{aligned}\)

\(\begin{aligned} s_{11} & =\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})^2 \\ & =\frac{1}{n-1}[(601.4-600.36)^2+(601.6-600.36)^2+(598-600.36)^2+(601.4-600.36)^2+(599.4-600.36)^2] \\ & =2.548 \\ \end{aligned}\)

\(\begin{aligned} s_{12} & = \frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y}) \\ & = \frac{1}{n-1}[(601.4-600.36)(598-599.52)+(601.6-600.36)(599.8-599.52)+(598-600.36)(600-599.52)+(601.4-600.36)(599.8-599.52)+(599.4-600.36)(600-599.52)] \\ & = -0.634 \end{aligned}\)

\(s_1= \begin{bmatrix} s_{11} & s_{12}\\ s_{21} & s_{22} \end{bmatrix} = \begin{bmatrix} 2.548 & -0.634\\ -0.634 & 0.732 \end{bmatrix}\)


③ 樣本協方差矩陣均值:\(m\)​​ 個矩陣對應位置的均值。

\(\bar{S} = \begin{bmatrix} \bar{s}_{11} & \bar{s}_{12}\\ \bar{s}_{21} & \bar{s}_{22} \end{bmatrix} =\begin{bmatrix} 1.5026 & -0.0515\\ -0.0515 & 0.3302 \end{bmatrix}\)


④ 樣本的統計量 \(T_i^2\)

\(\bar{S}^{-1}=\begin{bmatrix} 0.66908978 & 0.10435531\\ 0.10435531 & 3.04474348 \end{bmatrix}\)

\(\begin{aligned} T_i^2 & = n(\bar{x}-\bar{\bar{x}})\bar{S}^{-1}(\bar{x}^T-\bar{\bar{x}})^T \\ & = 5* \begin{bmatrix} 600.36-600.072 & 599.52-599.548 \end{bmatrix}* \bar{S}^{-1}* \begin{bmatrix} 600.36-600.072 \\ 599.52-599.548 \end{bmatrix} \\ & = 5* \begin{bmatrix} 0.288 & -0.028 \end{bmatrix}* \bar{S}^{-1}* \begin{bmatrix} 0.288 \\ -0.028 \end{bmatrix} \\ & = 0.281 \end{aligned}\)


數據5:

子組ID \(x_1\) \(x_2\) \(x_3\) 統計量 \(T_i^2\)
1 1.504 4.075 1.971 3.6011
2 1.685 4.599 2.26 1.3041
3 1.529 4.1 1.994 2.4936
4 1.554 4.19 2.024 1.9272
5 1.604 4.275 2.063 0.9898
6 1.664 4.341 2.12 0.8281
7 1.789 4.981 2.287 2.1348
8 1.723 4.416 2.166 2.2673
9 1.831 5.196 2.285 7.3106
10 1.622 4.353 2.135 0.3211
11 1.683 4.396 2.154 0.7400
12 1.598 4.329 2.18 2.1391
13 1.847 5.168 2.331 4.0995
14 1.793 4.547 2.184 4.9793
15 1.886 5.259 2.389 4.3210
16 1.631 4.338 2.073 1.1237
17 1.543 4.204 2.151 4.0627
18 1.665 4.48 2.282 4.3832
19 1.578 4.349 2.128 1.5162
20 1.533 4.28 2.039 3.6714
21 1.674 4.504 2.192 0.0990
22 1.749 4.371 2.155 5.3129
23 1.83 5.094 2.436 4.4348
24 1.813 4.989 2.428 4.8074
25 1.73 4.396 2.16 3.1322
\(\bar{x}_1\)=1.6823 \(\bar{x}_2\)=4.5292 \(\bar{x}_3\)=2.1835

① 樣本均值:
\(\bar{x}=(\bar{x}_1,\ \bar{x}_2,\ \bar{x}_3)'=(1.6823,\ 4.5292,\ 2.1835)'\)

② 樣本協方差矩陣:

\(\begin{aligned} & x_1=[1.504,1.685,...,1.813,1.73] \\ & x_2=[4.075,4.599,...,4.989,4.396] \\ & x_2=[1.971,2.26,...,2.428,2.16] \\ & \overline{x}_1=1.6823 \\ & \overline{x}_2=4.5292 \\ & \overline{x}_3=2.1835 \\ \end{aligned}\)

\(\begin{aligned} s_{11} & =\frac{1}{m-1}\sum_{i=1}^m(x_{1i}-\bar{x}_1)^2 \\ & =\frac{1}{m-1}[(1.504-1.6823)^2+(1.685-1.6823)^2+...+(1.813-1.6823)^2+(1.73-1.6823)^2] \\ & =0.0128 \\ \end{aligned}\)

\(\begin{aligned} s_{12} & =\frac{1}{m-1}\sum_{i=1}^m(x_{1i}-\bar{x}_1)(x_{2i}-\bar{x}_2) \\ & =\frac{1}{m-1}[(1.504-1.6823)(4.075-4.5292)+(1.685-1.6823)(4.599-4.5292)+...+(1.73-1.6823)(4.396-4.5292)] \\ & =0.0366 \\ \end{aligned}\)

\(S= \begin{bmatrix} s_{11} & s_{12} & s_{13}\\ s_{21} & s_{22} & s_{23}\\ s_{31} & s_{32} & s_{33}\\ \end{bmatrix}= \begin{bmatrix} 0.0128 & 0.0366 & 0.0123\\ 0.0366 & 0.1298 & 0.0412\\ 0.0123 & 0.0412 & 0.0163\\ \end{bmatrix}\)


③ 樣本的統計量 \(T_i^2\)

\(\begin{aligned} T_1^2 & =(x_1-\bar{x})S^{-1}(x_1-\bar{x})^T \\ & = \begin{bmatrix} 1.504-1.6823 & 4.075-4.5292 & 1.971-2.1835 \end{bmatrix} *S^{-1} * \begin{bmatrix} 1.504-1.6823 \\ 4.075-4.5292 \\ 1.971-2.1835 \end{bmatrix} \\ & = \begin{bmatrix} -0.1783 & -0.4542 & -0.2125 \end{bmatrix} *S^{-1} * \begin{bmatrix} -0.1783 \\ -0.4542 \\ -0.2125 \end{bmatrix} \\ &=3.6011 \end{aligned}\)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM