連續時間單位沖激信號 \(\delta(t)\) 的基本性質
-
篩選特性:\(x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)\)
-
取樣特性:\(\displaystyle\int_{-\infty}^{+\infty}x(t)\delta(t-t_0) dt = x(x_0)\)
注意積分區間是否包含沖激點。
-
展縮特性:\(\delta(at+b)=\frac{1}{|a|}\delta(t+\frac{b}{a})\)
-
積分特性:\(u(t) = \displaystyle\int_{-\infty}^{t} \delta(\tau) d\tau\)
-
微分特性:\(\delta^\prime (t) = \frac{\mathrm{d}}{\mathrm{d} t}\delta(t)\)
-
卷積特性:\(x(t) * \delta(t) = x(t)\),\(x(t) * \delta(t-t_0) = x(t-t_0)\)
-
這是一個偶函數