Given two positive integers x
and y
, an integer is powerful if it is equal to x^i + y^j
for some integers i >= 0
and j >= 0
.
Return a list of all powerful integers that have value less than or equal to bound
.
You may return the answer in any order. In your answer, each value should occur at most once.
Example 1:
Input: x = 2, y = 3, bound = 10
Output: [2,3,4,5,7,9,10]
Explanation:
2 = 2^0 + 3^0
3 = 2^1 + 3^0
4 = 2^0 + 3^1
5 = 2^1 + 3^1
7 = 2^2 + 3^1
9 = 2^3 + 3^0
10 = 2^0 + 3^2
Example 2:
Input: x = 3, y = 5, bound = 15
Output: [2,4,6,8,10,14]
Note:
1 <= x <= 100
1 <= y <= 100
0 <= bound <= 10^6
這道題定義了一種強力整數,說是給定的整數x和y分別的i次冪和j次冪之和,現在又給了一個整數 bound,讓返回不超過這個范圍的所有的強力整數。既然是一道 Easy 的題目,就不要考慮太多的技巧了,直接上無腦破解了吧。博主最開始的解法是在 bound 范圍內先分別生成x和y的指數數組,即 x^0, x^1, x^2....
和 y^0, y^1, y^2....
,然后從兩個數組中各自任意取出一個數字來相加,只要不超過 bound,就可以放入結果 res 中了,需要注意的是,若x和y等於1的話,那么會陷入死循環,因為乘以1永遠等於其本身,所以要加另外的判斷。博主的方法其實可以優化一下,沒有必要用額外的數組去保存,而是可以直接在 for 循環中處理就可以了。還有,為了防止重復數字,先是把結果都存入一個 TreeSet 中,利用其可以去除重復項的特點,最后再轉回數組就行了,參見代碼如下:
class Solution {
public:
vector<int> powerfulIntegers(int x, int y, int bound) {
set<int> res;
for (int a = 1; a < bound; a *= x) {
for (int b = 1; a + b <= bound; b *= y) {
res.insert(a + b);
if (y == 1) break;
}
if (x == 1) break;
}
return vector<int>(res.begin(), res.end());
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/970
參考資料:
https://leetcode.com/problems/powerful-integers/
https://leetcode.com/problems/powerful-integers/discuss/214212/JavaC%2B%2BPython-Easy-Brute-Force