Given two integers dividend
and divisor
, divide two integers without using multiplication, division and mod operator.
Return the quotient after dividing dividend
by divisor
.
The integer division should truncate toward zero.
Example 1:
Input: dividend = 10, divisor = 3 Output: 3
Example 2:
Input: dividend = 7, divisor = -3 Output: -2
Note:
- Both dividend and divisor will be 32-bit signed integers.
- The divisor will never be 0.
- Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231, 231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
這道題讓我們求兩數相除,而且規定不能用乘法,除法和取余操作,那么這里可以用另一神器位操作 Bit Manipulation,思路是,如果被除數大於或等於除數,則進行如下循環,定義變量t等於除數,定義計數p,當t的兩倍小於等於被除數時,進行如下循環,t擴大一倍,p擴大一倍,然后更新 res 和m。這道題的 OJ 給的一些 test case 非常的討厭,因為輸入的都是 int 型,比如被除數是 -2147483648,在 int 范圍內,當除數是 -1 時,結果就超出了 int 范圍,需要返回 INT_MAX,所以對於這種情況就在開始用 if 判定,將其和除數為0的情況放一起判定,返回 INT_MAX。然后還要根據被除數和除數的正負來確定返回值的正負,這里采用長整型 long 來完成所有的計算,最后返回值乘以符號即可,代碼如下:
解法一:
class Solution { public: int divide(int dividend, int divisor) { if (dividend == INT_MIN && divisor == -1) return INT_MAX; long m = labs(dividend), n = labs(divisor), res = 0; int sign = ((dividend < 0) ^ (divisor < 0)) ? -1 : 1; if (n == 1) return sign == 1 ? m : -m; while (m >= n) { long t = n, p = 1; while (m >= (t << 1)) { t <<= 1; p <<= 1; } res += p; m -= t; } return sign == 1 ? res : -res; } };
我們可以通過遞歸的方法來解使上面的解法變得更加簡潔:
解法二:
class Solution { public: int divide(int dividend, int divisor) { long m = labs(dividend), n = labs(divisor), res = 0; if (m < n) return 0; long t = n, p = 1; while (m > (t << 1)) { t <<= 1; p <<= 1; } res += p + divide(m - t, n); if ((dividend < 0) ^ (divisor < 0)) res = -res; return res > INT_MAX ? INT_MAX : res; } };
Github 同步地址:
https://github.com/grandyang/leetcode/issues/29
參考資料:
https://leetcode.com/problems/divide-two-integers/
https://leetcode.com/problems/divide-two-integers/discuss/13524/summary-of-3-c-solutions
https://leetcode.com/problems/divide-two-integers/discuss/13407/C%2B%2B-bit-manipulations