圓錐曲線的定值問題


前言

與之相關聯的姊妹篇博文: 圓錐曲線的定點問題

運算儲備

代入消元的操作,划歸為二次方程,韋達定理求得\(x_1+x_2\)\(x_1\cdot x_2\)[以及\(y_1+y_2\)\(y_1\cdot y_2\)],通分整理,向量的坐標運算等;

例說運算

圓錐曲線中的定值定點問題的運算往往少不了以下的過程。

將直線\(y=kx+2\)代入圓錐曲線\(\cfrac{x^2}{4}+\cfrac{y^2}{3}=1\)的代入運算過程,可以如下簡化:

先將圓錐曲線整理為\(3x^2+4y^2-12=0\),然后這樣在演草紙上書寫,注意對齊書寫,一次運算過

\[\left\{\begin{array}{l}{3x^2}\\{4(k^2x^2+4kx+4)}\\{\hspace{6em}-12}\end{array}\right. \]

一次就可以整理為\((4k^2+3)x^2+16kx+4=0\)

  • 將直線 \(y=k(x-1)+2\) 代入 \(x^2+y^2-6x=0\),消\(y\)整理時的兩個思路,

\(x^2+[k(x-1)+2]^2-6x=0\)

思路一:\(x^2+(kx-k+2)^2-6x=0\)

思路二:\(x^2+k^2(x-1)^2+2^2+2\times2\times k(x-1)-6x=0\)

定值破解

由於這類問題的求解常常要用到韋達定理\(x_1+x_2\)\(x_1x_2\)的值,故定值問題常常考查線段長度,三角形或四邊形的周長,三角形或四邊形的面積,向量內積等可以用上\(x_1+x_2\)\(x_1x_2\)值的數學素材;

定值問題的破解題眼可能有以下情形:

①形如\(\cfrac{2k^2}{4+k^2}+\cfrac{8}{4+k^2}+1=\cfrac{2(k^2+4)}{4+k^2}+1=2+1=3\)為定值;

②加減消參法,和式中不含有參數,如\(3+\cfrac{2ak}{4+k^2}+1-\cfrac{2ak}{4+k^2}=4\),故為定值;比如上例;

③相乘消參法,積式中不含有參數,如\(\cfrac{2}{2k^2+3k}\cdot \cfrac{2k^2+3k}{8}=\cfrac{1}{4}\),故為定值;

再比如,\(S_{\triangle ABC}=\cdots=\cfrac{1}{2}\cdot\cfrac{6|m|}{4m^{2}}\cdot|3m|=\cfrac{9}{4}\)

④分式中對應項系數成比例消參,分式的值為定值;借用下例理解:

【案例】設存在常數\(m\),使得\(\cfrac{2k^2+m}{2m^2(k^2+1)}\)為定值,求\(m\)的值以及此定值;

思路1:由於上式對任意\(k\in R\)恆為定值,設\(\cfrac{2k^2+m}{2m^2(k^2+1)}=t\)

整理得到,\((2m^2t-2)k^2+(2m^2t-m)=0\),由\(\left\{\begin{array}{l}{2m^2t-2=0}\\{2m^2t-m=0}\end{array}\right.\quad\)

\(\left\{\begin{array}{l}{2m^2t=2}\\{2m^2t=m}\end{array}\right.\quad\) 兩式相比,解得\(m=2\)

此時\(\cfrac{2k^2+m}{2m^2(k^2+1)}=\cfrac{2k^2+2}{2\times 2^2(k^2+1)}=\cfrac{1}{4}\)

思路2:\(\cfrac{2k^2+m}{2m^2(k^2+1)}=\cfrac{2k^2+m}{2m^2k^2+2m^2}\),則分式中對應項系數成比例,

\(\cfrac{2}{2m^2}=\cfrac{m}{2m^2}\),解得\(m=2\)

此時\(\cfrac{2k^2+m}{2m^2(k^2+1)}=\cfrac{2k^2+2}{2\times 2^2(k^2+1)}=\cfrac{1}{4}\)

【案例】如設\(x\)軸上的一個動點\(P(x_0,0)\),某運算結果為\(\overrightarrow{PA}\cdot \overrightarrow{PB}=\cfrac{(8x_0-5)k^2-12}{3+4k^2}+x_0^2\)

要使得\(\overrightarrow{PA}\cdot \overrightarrow{PB}\)\(k\)的取值無關,只需要\(\cfrac{8x_0-5}{-12}=\cfrac{4}{3}\),解得\(x_0=-\cfrac{11}{8}\)

所以在\(x\)軸上存在點\(P\),使得\(\overrightarrow{PA}\cdot \overrightarrow{PB}\)為定值,\(P\)的坐標為\((-\cfrac{11}{8},0)\),定值為\(-\cfrac{135}{64}\)

【案例】題目運算結果為\(\overrightarrow{QA}\cdot \overrightarrow{QB}=\cfrac{(2y_0-5)k^2+2x_0k-3}{k^2+4}+x_0^2+(1-y_0)^2\)

問:上述結果當\(x_0\)\(y_0\)為何值時,運算結果與參數\(k\)無關,為定值?

\(\left\{\begin{array}{l}{x_0=0}\\{\cfrac{2y_0-5}{1}=\cfrac{-3}{4}}\end{array}\right.\),即\(x_0=0\)\(y_0=\cfrac{17}{8}\)時,\(\overrightarrow{QA}\cdot \overrightarrow{QB}=-\cfrac{3}{4}+(\cfrac{9}{8})^2=\cfrac{33}{64}\),

故存在定點\((0,\cfrac{17}{8})\),不論\(k\)為何值,都有\(\overrightarrow{QA}\cdot \overrightarrow{QB}=\cfrac{33}{64}\)為定值。

典例剖析

[定值問題]【2021屆鳳翔中學高三文科月考三用21題】如圖,橢圓\(E:\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a>b>0)\)的離心率為\(\cfrac{\sqrt{2}}{2}\),點\(P\)在短軸 \(CD\)上, 且\(\overrightarrow{PC}\cdot\overrightarrow{PD}=-1\)

(1).求橢圓\(E\)的標准方程;

解析:由已知,點 \(C\)\(D\) 的坐標分別為 \((0,-b)\)\((0, b)\),又點 \(P\) 的坐標為 \((0,1)\)\(\overrightarrow{PC}\cdot\overrightarrow{PD}=-1\)

於是 \(\left\{\begin{array}{l}{1-b^{2}=-1}\\{\cfrac{c}{a}=\cfrac{\sqrt{2}}{2}}\\{a^{2}-b^{2}=c^{2}}\end{array}\right.\) \(\quad\)解得\(a=2\)\(b=\sqrt{2}\)

故橢圓\(E\)的標准方程為\(\cfrac{x^2}{4}+\cfrac{y^2}{2}=1\)

(2).設\(O\)為坐標原點,過點\(P\)的動直線和橢圓交於\(A\)\(B\)兩點,是否存在常數\(\lambda\),使得\(\overrightarrow{OA}\cdot\overrightarrow{OB}+\lambda \overrightarrow{PA}\cdot\overrightarrow{PB}\) 為定值,若存在, 求出 \(\lambda\) 的值; 若不存在, 請說明理由.

解析:當直線 \(AB\) 的斜率存在時,設直線 \(AB\) 的方程為 \(y=kx+1\)

\(A(x_1,y_1)\)\(B(x_2,y_2)\),聯立得到\(\left\{\begin{array}{l}{y=kx+1}\\{\cfrac{x^2}{4}+\cfrac{y^2}{2}=1}\end{array}\right.\)

得到\((2k^2+1)x^2+4kx-2=0\),其判別式 \(\Delta=(4 k)^{2}+8\left(2 k^{2}+1\right)>0\)

所以 \(x_{1}+x_{2}=-\cfrac{4k}{2k^{2}+1}\)\(x_{1}x_{2}=-\cfrac{2}{2k^{2}+1}\),又由直線\(y=kx+1\)

得到\(y_1+y_2=(kx_1+1)+(kx_2+1)=k(x_1+x_2)+2\)

且有\(y_1y_2=(kx_1+1)(kx_2+1)=k^2x_1x_2+k(x_1+x_2)+1\)

\(\overrightarrow{OA}=(x_1,y_1)\)\(\overrightarrow{OB}=(x_2,y_2)\)\(\overrightarrow{PA}=(x_1,y_1-1)\)\(\overrightarrow{PB}=(x_2,y_2-1)\)此處用到設而不求的技巧,即不直接求解\(x_1\)\(y_1\)\(x_2\)\(y_2\)的單個值,而是將其整體用韋達定理代入運算。\(\quad\)

從而\(\overrightarrow{OA}\cdot\overrightarrow{OB}+\lambda \overrightarrow{PA}\cdot\overrightarrow{PB}\)\(=x_1x_2+y_1y_2+\lambda[x_1x_2+(y_1-1)(y_2-1)]\)

\(=x_1x_2+y_1y_2+\lambda[x_1x_2+y_1y_2-(y_1+y_2)+1]\)

\(=(1+\lambda)x_1x_2+(1+\lambda)y_1y_2-\lambda(y_1+y_2)+\lambda\)

\(=(1+\lambda)(1+k^2)x_{1}x_2+k(x_1+x_2)+1\)

\(=\cfrac{(-2\lambda-4)k^{2}+(-2\lambda-1)}{2k^{2}+1}\)

\(=\cfrac{(-2\lambda-4)[(k^{2}+\cfrac{1}{2})-\cfrac{1}{2}]+(-2\lambda-1)}{2k^{2}+1}\) \(\quad\)注釋此處使用了分式列項法,目的是將參變量\(k\)集中到分母一個位置,便於下一步說明\(\quad\)

\(=\cfrac{(-2\lambda-4)\cdot(k^{2}+\cfrac{1}{2})-(-2\lambda-4)\cdot\cfrac{1}{2}+(-2\lambda-1)}{2k^{2}+1}\)

\(=\cfrac{(-2\lambda-4)\cdot(k^{2}+\cfrac{1}{2})-(\lambda-1)}{2k^{2}+1}\)

\(=-\cfrac{\lambda-1}{2k^{2}+1}-\lambda-2\) \(\quad\)注釋此處已經將參變量\(k\)集中到了分母一個位置,這樣一旦分式的分子值為零,則分母上的參變量\(k\)不能起作用,故結果一定是與參變量\(k\)無關的結果,則一定是常數;\(\quad\)

所以, 當 \(\lambda=1\) 時, \(-\cfrac{\lambda-1}{2k^{2}+1}-\lambda-2=-3\)

此時, \(\overrightarrow{OA}\cdot\overrightarrow{OB}+\lambda\overrightarrow{PA}\cdot\overrightarrow{PB}=-3\),為定值;

更簡單的解法:從這一步變形 \(\cfrac{(-2\lambda-4)k^{2}+(-2\lambda-1)}{2k^{2}+1}\) 開始,

如果上式為常數,則與變參量\(k\)無關,故對應系數成比例;

\(\cfrac{-2\lambda-4}{2}=\cfrac{-2\lambda-1}{1}\),解得\(\lambda=1\)

代入上式 \(\cfrac{(-2\lambda-4)k^{2}+(-2\lambda-1)}{2k^{2}+1}=-3\) ,為定值;

當直線 \(AB\) 的斜率不存在時,直線\(AB\) 即為直線 \(CD\)

\(\overrightarrow{OA}\cdot\overrightarrow{OB}+\lambda \overrightarrow{PA}\cdot\overrightarrow{PB}=\overrightarrow{OC}\cdot\overrightarrow{OD}+\lambda \overrightarrow{PC}\cdot\overrightarrow{PD}=-2-1=-3\),為定值;

故存在常數\(\lambda\),使得\(\overrightarrow{OA}\cdot\overrightarrow{OB}+\lambda \overrightarrow{PA}\cdot\overrightarrow{PB}\) 為定值.

【定值問題】已知離心率為\(\cfrac{1}{2}\)的橢圓\(C:\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a>b>0)\)的右焦點為\(F\),且\(C\)過點\((1,-\frac{3}{2})\)

(1)求橢圓\(C\)的標准方程;

分析:由題可知,\(\left\{\begin{array}{l}{\frac{1}{a^2}+\frac{9}{4b^2}=1}\\{a^2=b^2+c^2}\\{\frac{c}{a}=\frac{1}{2}}\end{array}\right.\)

解得\(a=2\)\(b=\sqrt{3}\),故橢圓\(C\)的標准方程為\(\cfrac{x^2}{4}+\cfrac{y^2}{3}=1\).

(2)若不與\(x\)軸垂直的直線\(l\)\(C\)交於\(M\)\(N\)兩點(點\(M\)\(N\)均在\(y\)軸右側,且\(M\)\(N\)\(F\)不共線),坐標原點\(O\)到直線\(l\)的距離為\(\sqrt{3}\),求\(\triangle MNF\)的周長.[或證明:\(\triangle MNF\)的周長為定值]

分析:由題目易知,直線\(l\)的斜率存在且不為零,

設其方程為\(y=kx+m(k\neq 0)\)\(M(x_1,y_1)\)\(N(x_2,y_2)\)

由於坐標原點\(O\)到直線\(l\)的距離為\(\sqrt{3}\),則有\(\cfrac{|m|}{\sqrt{1+k^2}}=\sqrt{3}\),即\(m^2=3(1+k^2)\)

\(\left\{\begin{array}{l}{y=kx+m}\\{\cfrac{x^2}{4}+\cfrac{y^2}{3}=1,}\end{array}\right.\) 得到\((3+4k^2)x^2+8kmx+4m^2-12=0\)

整理為\((3+4k^2)x^2+8kmx+12k^2=0\),由韋達定理得到

\(x_1+x_2=-\cfrac{8km}{3+4k^2}\)\(x_1x_2=\cfrac{12k^2}{3+4k^2}\)

\(|MN|=\sqrt{1+k^2}|x_1-x_2|=\sqrt{1+k^2}\sqrt{(x_1+x_2)^2-4x_1x_2}\) \(=\sqrt{1+k^2}\sqrt{(-\cfrac{8km}{3+4k^2})^2-4\times \cfrac{12k^2}{3+4k^2}}\) \(=\cfrac{4|m||k|}{3+4k^2}\)

因為\(2>x_1>0\)\(2>x_2>0\),由\(x_1+x_2>0\),所以\(mk<0\)

\(|MN|=-\cfrac{4mk}{3+4k^2}\)

\(|MF|^2=(x_1-1)^2+y_1^2=(\cfrac{1}{2}x_1-2)^2\),則\(|MF|=2-\cfrac{1}{2}x_1\)

同理得到,\(|NF|=2-\cfrac{1}{2}x_2\)

\(|MF|+|NF|=4-\cfrac{1}{2}(x_1+x_2)=4+\cfrac{4km}{3+4k^2}\)

所以\(|MF|+|NF|+|MN|=4\),即\(\triangle MNF\)的周長為\(4\).

【定值問題】【2019屆高三理科數學三輪模擬訓練】已知直線\(l:y=kx+1\)與曲線\(C:\cfrac{x^2}{a^2}\)\(+\)\(\cfrac{y^2}{b^2}\)\(=1\)\((a>0,b>0)\)交於不同的兩點,\(O\)為坐標原點,

(1)若\(k=1\)\(|OA|=|OB|\),求證:曲線\(C\)是一個圓;

證法1:設直線\(l\)和曲線的交點為\(A(x_1,y_1)\)\(B(x_2,y_2)\)

由於\(|OA|=|OB|\),則有\(\sqrt{x_1^2+y_1^2}=\sqrt{x_2^2+y_2^2}\),即\(x_1^2+y_1^2=x_2^2+y_2^2\)

\(x_1^2-x_2^2=y_2^2-y_1^2\),又由於點\(A\)\(B\)在曲線\(C\)上,

則有\(\cfrac{x_1^2}{a^2}+\cfrac{y_1^2}{b^2}=1\)\(\cfrac{x_2^2}{a^2}+\cfrac{y_2^2}{b^2}=1\)

兩式相減得到,\(x_1^2-x_2^2=\cfrac{a^2}{b^2}(y_2^2-y_1^2)\)

\(\cfrac{a^2}{b^2}=1\),即\(a^2=b^2\),即曲線\(C\)是一個圓;

證法2:設直線\(l\)和曲線的交點為\(A(x_1,y_1)\)\(B(x_2,y_2)\),則\(x_1\neq x_2\)

由於\(|OA|=|OB|\),則有\(\sqrt{x_1^2+y_1^2}=\sqrt{x_2^2+y_2^2}\),即\(x_1^2+(x_1+1)^2=x_2^2+(x_2+1)^2\)

整理為\(2(x_1-x_2)(x_1+x_2+1)=0\),所以\(x_1+x_2=-1\)

\(\left\{\begin{array}{l}{y=x+1}\\{\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1}\end{array}\right.\) 得到\((a^2+b^2)x^2+2a^2x+a^2(1-b^2)=0\)

\(\Delta\geqslant 0\)\(x_1+x_2=\cfrac{-2a^2}{a^2+b^2}\),所以\(\cfrac{-2a^2}{a^2+b^2}=-1\)

\(a^2=b^2\),即曲線\(C\)是一個圓;

(2)若曲線\(C\)\((0,2)\)\((1,0)\),是否存在一個定點\(Q\),使得\(\overrightarrow{QA}\cdot \overrightarrow{QB}\)為定值?若存在,求出定點\(Q\)和定值;若不存在,請說明理由。

分析:由題意得,橢圓\(C\)的方程為\(\cfrac{y^2}{4}+x^2=1\),假設存在點\(Q(x_0,y_0)\),設交點為\(A(x_1,y_1)\)\(B(x_2,y_2)\)

\(\left\{\begin{array}{l}{y=kx+1}\\{x^2+\cfrac{y^2}{4}=1}\end{array}\right.\) 得到\((k^2+4)x^2+2kx-3=0\)

\(x_1+x_2=\cfrac{-2k}{k^2+4}\)\(x_1x_2=\cfrac{-3}{k^2+4}\)

由於直線\(l:y=kx+1\)恆過橢圓內定點\((1,0)\),故\(\Delta >0\)恆成立,

\(\overrightarrow{QA}\cdot \overrightarrow{QB}=(x_1-x_0,y_1-y_0)\cdot (x_2-x_0,y_2-y_0)\)\(=(x_1-x_0)(x_2-x_0)+(y_1-y_0)(y_2-y_0)\)

\(=x_1x_2-x_0(x_1+x_2)+x_0^2+(kx_1+1-y_0)(kx_2+1-y_0)\)\(=(1+k^2)x_1x_2+[k(1-y_0)-x_0](x_1+x_2)+x_0^2+(1-y_0)^2\)

\(=(1+k^2)\cfrac{-3}{k^2+4}+[k(1-y_0)-x_0]\cfrac{-2k}{k^2+4}+x_0^2+(1-y_0)^2\)\(=\cfrac{-3(1+k^2)-2[k(1-y_0)-x_0]k}{k^2+4}+x_0^2+(1-y_0)^2\)

\(=\cfrac{(2y_0-5)k^2+2x_0k-3}{k^2+4}+x_0^2+(1-y_0)^2\)

\(\left\{\begin{array}{l}{x_0=0}\\{\cfrac{2y_0-5}{1}=\cfrac{-3}{4}}\end{array}\right.\),即\(x_0=0\)\(y_0=\cfrac{17}{8}\)時,\(\overrightarrow{QA}\cdot \overrightarrow{QB}=-\cfrac{3}{4}+(\cfrac{9}{8})^2=\cfrac{33}{64}\),

故存在定點\((0,\cfrac{17}{8})\),不論\(k\)為何值,都有\(\overrightarrow{QA}\cdot \overrightarrow{QB}=\cfrac{33}{64}\)為定值。

【2017寶雞中學高三理科第一次月考第22題】已知右焦點為\(F\)的橢圓\(M:\cfrac{x^2}{a^2}+\cfrac{y^2}{3}=1(a>\sqrt{3})\)與直線\(y=\cfrac{3}{\sqrt{7}}\)相交於\(P\)\(Q\)兩點,且\(PF\perp QF\)

(1). 求橢圓\(M\)的方程。

解析:將\(y=\cfrac{3}{\sqrt{7}}\)代入橢圓方程,得到\(x=\pm\cfrac{2}{\sqrt{7}}a\)

故得到\(P(\cfrac{2}{\sqrt{7}}a,\cfrac{3}{\sqrt{7}})\)\(Q(-\cfrac{2}{\sqrt{7}}a,\cfrac{3}{\sqrt{7}})\)\(F(\sqrt{a^2-3},0)\)

這樣\(\overrightarrow{PF}=(\sqrt{a^2-3}-\cfrac{2}{\sqrt{7}}a,-\cfrac{3}{\sqrt{7}})\)\(\overrightarrow{QF}=(\sqrt{a^2-3}+\cfrac{2}{\sqrt{7}}a,-\cfrac{3}{\sqrt{7}})\)

\(\overrightarrow{PF}\cdot\overrightarrow{QF}=0\),得到\(a^2=4\)

故橢圓 \(M\)\(\cfrac{x^2}{4}+\cfrac{y^2}{3}=1\)

(2). \(O\)為坐標原點,\(A\)\(B\)\(C\)是橢圓\(M\)上不同三點,並且\(O\)\(\Delta ABC\)的重心,試探究\(\Delta ABC\)的面積是否為定值,若是,求出這個定值;若不是,說明理由。

解析: (有斜率時)設直線 \(AB\) 的方程為 \(y=kx+m\),即\(kx-y+m=0\)

代入橢圓方程 \(3x^{2}+4y^{2}=12\)

可得 \((3+4k^{2})x^{2}+8kmx+4m^{2}-12=0\)

\(A(x_{1}, y_{1})\)\(B(x_{2}, y_{2})\),則\(\overrightarrow{OA}=(x_1,y_1)\)\(\overrightarrow{OB}=(x_2,y_2)\)

由韋達定理得到,則 \(x_{1}x_{2}=\cfrac{4m^{2}-12}{3+4k^{2}}\)\(x_{1}+x_{2}=-\cfrac{8km}{3+4k^{2}}\)

\(y_{1}+y_{2}=k(x_{1}+x_{2})+2m=\cfrac{6m}{3+4k^{2}}\)

\(O\)\(\triangle ABC\)重心, 則\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)

可得 \(\overrightarrow{OC}=-(\overrightarrow{OA}+\overrightarrow{OB})\),又由於\(\overrightarrow{OA}+\overrightarrow{OB}=(x_1+x_2,y_1+y_2)\)

故有\(\overrightarrow{OC}=(\cfrac{8km}{3+4k^{2}},-\cfrac{6m}{3+4k^{2}})\),即點\(C(\cfrac{8km}{3+4k^{2}},-\cfrac{6m}{3+4k^{2}})\)

由於點\(C\)在橢圓上, 則有 \(3(\cfrac{8km}{3+4k^{2}})^{2}+4(-\cfrac{6m}{3+4k^{2}})^{2}=12\)

化簡上式,可得 4\(m^{2}=3+4k^{2}\)

又由弦長公式可得,\(|AB|=\sqrt{1+k^{2}}\cdot\sqrt{(x_{1}+x_{2})^{2}-4x_{1}x_{2}}\)

\(=\sqrt{1+k^{2}}\cdot\sqrt{(-\cfrac{8km}{3+4k^{2}})^{2}-4\cdot\cfrac{4m^{2}-12}{3+4 k^{2}}}\)

\(=\cfrac{4 \sqrt{1+k^{2}}}{3+4k^{2}}\cdot\sqrt{9+12k^{2}-3m^{2}}\)

再者,由點\(C\) 到直線 \(AB\) 的距離 \(d=\cfrac{|kx_{_C}+m-y_{_C}|}{\sqrt{1+k^{2}}}\)

\(=\cfrac{\left|k\cdot \cfrac{8km}{3+4k^{2}}+m-(-\cfrac{6m}{3+4k^{2}})\right|}{\sqrt{1+k^{2}}}=\cfrac{|3m|}{\sqrt{1+k^{2}}}\)

\(S_{\triangle ABC}=\cfrac{1}{2}|AB| \cdot d=\cfrac{1}{2}\cdot\cfrac{4\sqrt{1+k^{2}}}{3+4k^{2}}\cdot\sqrt{9+12k^{2}-3m^{2}}\cdot \cfrac{|3m|}{\sqrt{1+k^{2}}}\)

\(=\cfrac{6|m|}{3+4k^{2}}\cdot\sqrt{9+12k^{2}-3m^{2}}\)\(=\cfrac{6|m|}{4m^{2}}\cdot\sqrt{12m^{2}-3m^{2}}\)

\(=\cfrac{6|m|}{4m^{2}}\cdot |3m|=\cfrac{9}{2}\)

當直線 \(AB\) 的斜率不存在時,要滿足條件\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)

則直線為 \(x=-1\),此時\(A(-1,\cfrac{3}{2})\)\(B(-1,-\cfrac{3}{2})\)\(C(2,0)\)

\(|AB|=3\)\(d=2+1=3\)\(S_{\triangle ABC}=\cfrac{1}{2}|AB|\cdot d=\cfrac{9}{2}\).

綜上可得, \(\triangle ABC\) 的面積為定值 \(\cfrac{9}{2}\).

難點題目

[定點+定值問題]【2020屆寶雞市質檢1文數第21題】已知動圓\(Q\)與直線\(x+\frac{1}{2}=0\)相切,且與圓\(x^2+y^2-2x+\frac{3}{4}=0\)外切;

(1).求動圓\(Q\)的圓心軌跡\(C\)的方程;

[法1]:直接法,將圓\(x^2+y^2-2x+\frac{3}{4}=0\)化為標准形式為\((x-1)^2+y^2=\frac{1}{4}\)

設動圓的圓心\(Q\)坐標為\(Q(x,y)\),由動圓\(Q\)與直線\(x+\frac{1}{2}=0\)相切,且與圓\((x-1)^2+y^2=\frac{1}{4}\)外切;

可知\(\sqrt{(x-1)^2+y^2}=|x+\frac{1}{2}|+\frac{1}{2}=x+1\),兩邊平方整理得到,\(y^2=4x\)

所以動圓\(Q\)的圓心軌跡\(C\)的方程為\(y^2=4x\)

[法2]:定義法,動圓心\(Q(x,y)\)到定圓點\((1,0)\)的距離為\(r+\frac{1}{2}\),動圓心\(Q(x,y)\)到定直線\(x+\frac{1}{2}=0\)的距離為\(r\)

則動圓心\(Q(x,y)\)到定直線\(x+1=0\)的距離為\(r+\frac{1}{2}\)

則動點\(Q(x,y)\)到定點的距離與動點到定直線的距離相等,故動點的軌跡為形如\(y^2=2px\)的拋物線,

\(\cfrac{p}{2}=1\),則\(p=2\),故\(y^2=4x\)

(2).已知過點\(M(m,0)\)的直線\(l:x=ky+m\)與曲線\(C\)交於\(A\)\(B\)兩點,是否存在常數\(m\),使得\(\frac{1}{|AM|^2}\)\(+\frac{1}{|BM|^2}\)恆為定值?

分析:由題意可設直線\(l:x=ky+m\)

則由\(\left\{\begin{array}{l}{x=ky+m}\\{y^2=4x}\end{array}\right.\quad\) 消去\(x\)得到,\(y^2-4ky-4m=0\)

則由韋達定理可得,\(y_1+y_2=4k\)\(y_1y_2=-4m\)

\(\cfrac{1}{|AM|^2}\)\(+\cfrac{1}{|BM|^2}=\cfrac{1}{(x_1-m)^2+y_1^2}+\cfrac{1}{(x_2-m)^2+y_2^2}=\cfrac{1}{(k^2+1)y_1^2}+\cfrac{1}{(k^2+1)y_2^2}\)

\(=\cfrac{y_1^2+y_2^2}{(k^2+1)y_1^2y_2^2}=\cfrac{(y_1+y_2)^2-2y_1y_2}{(k^2+1)y_1^2y_2^2}\)

\(=\cfrac{16k^2+8m}{(k^2+1)16m^2}=\cfrac{2k^2+m}{2m^2(k^2+1)}\)

由於上式對任意\(k\in R\)恆為定值,設\(\cfrac{2k^2+m}{2m^2(k^2+1)}=t\)

整理得到,\((2m^2t-2)k^2+(2m^2t-m)=0\),由\(\left\{\begin{array}{l}{2m^2t-2=0}\\{2m^2t-m=0}\end{array}\right.\quad\)

\(\left\{\begin{array}{l}{2m^2t=2}\\{2m^2t=m}\end{array}\right.\quad\) 兩式相比,解得\(m=2\)

此時\(\cfrac{1}{|AM|^2}\)\(+\cfrac{1}{|BM|^2}=\cfrac{2k^2+m}{2m^2(k^2+1)}=\cfrac{2k^2+2}{2\times 2^2(k^2+1)}=\cfrac{1}{4}\)

故存在定點\(M(2,0)\),滿足題意。

法2: 從此處另解,

\(\cfrac{1}{|AM|^2}\)\(+\cfrac{1}{|BM|^2}=\cdots=\cfrac{2k^2+m}{2m^2(k^2+1)}=\cfrac{2k^2+m}{2m^2k^2+2m^2}\)

要使得上式為常數,即與參變量\(k\)無關,則必然會消去\(k\)

故令上式中分子分母中關於\(k\) 的表達式的系數對應成比例,

\(\cfrac{2}{2m^2}=\cfrac{m}{2m^2}\),解得\(m=2\)

此時的定值為\(\cfrac{2k^2+m}{2m^2k^2+2m^2}=\cfrac{2(k^2+1)}{2m^2(k^2+1)}=\cfrac{2}{2m^2}=\cfrac{1}{4}\)

【北京人大附中高二試題】在平面直角坐標系 \(xOy\) 中, \(A\)\(B\)\(x\) 軸正半軸上的兩個動點, \(P\)(異於原點 \(O\))為 \(y\) 軸上的一個定點. 若以\(AB\) 為直徑的圓與圓 \(x^{2}+(y-2)^{2}=1\) 相外切,且 \(\angle APB\) 的 大小恆為定值 , 則線段 \(OP\) 的長為 \(\sqrt{3}\)

分析:設點\(M(a,0)\),圓\(M\) 的半徑為\(r\)(變量),\(OP=t\)(常量),則有

由圖可知,\(\tan \angle OPA=\cfrac{a-r}{t}\)\(\tan\angle OPB=\cfrac{a+r}{t}\)

\(\tan \angle APB=\tan(\angle OPB-\angle OPA)=\cfrac{\cfrac{a+r}{t}-\cfrac{a-r}{t}}{1+\cfrac{a^{2}-r^{2}}{t^{2}}}=\cfrac{2rt}{t^{2}+a^{2}-r^{2}}\)

又由於兩圓外切,則\(\sqrt{a^{2}+4}=|r+1|\),即\(a^{2}=(r+1)^{2}-4\),代入上式得到,

\(\tan\angle APB=\cfrac{2rt}{t^{2}+2r-3}=\cfrac{2 t}{\frac{t^{2}-3}{r}+2}\)

由於\(\angle APB\) 的大小恆為定值, 故 \(t=\sqrt{3}\)

\(|OP|=\sqrt{3}\).

另解:\(\tan\angle APB=\cfrac{2t\cdot r}{2\cdot r+(t^{2}-3)}=\cfrac{2t\cdot r+0}{2\cdot r+(t^{2}-3)}\)

\(t^2-3=0\), 故 \(t=\sqrt{3}\),則\(|OP|=\sqrt{3}\).

對應練習

【定義法】已知圓\(M:(x+1)^2+y^2=1\),圓\(N:(x-1)^2+y^2=9\),動圓\(P\)與圓\(M\)外切並且與圓\(N\)內切,圓心\(P\)的軌跡方程為曲線\(C\),求\(C\)的方程;

分析:由已知得,圓\(M\)的圓心為\(M(-1,0)\),半徑\(r_1=1\)

\(N\)的圓心為\(N(1,0)\),半徑\(r_2=3\)

設圓\(P\)的圓心為\(P(x,y)\),半徑為\(R\)

由於圓\(P\)與圓\(M\)外切,則\(|PM|=R+r_1=R+1\)

又圓\(P\)與圓\(N\)內切,則則\(|PN|=r_2-R=3-R\)

所以\(|PM|+|PN|=(R+r_1)+(r_2-R)=r_1+r_2=4=2a\)\(2c=|MN|=2\)

由[橢圓的定義]可知,曲線\(C\)是以\(M\)\(N\)為左右焦點,長半軸長為\(a=2\),短半軸長為\(b=\sqrt{3}\)的橢圓(左頂點除外),

其軌跡方程為\(\cfrac{x^2}{4}+\cfrac{y^2}{3}=1(x\neq -2)\)

【選自2021屆黃岡八模測試卷一第20題】已知橢圓 \(C: \cfrac{x^{2}}{a^{2}}+\cfrac{y^{2}}{b^{2}}=1\) \((a>b>0)\) 的離心率為 \(\cfrac{\sqrt{3}}{2}\),過橢圓的焦點且與長軸垂直的弦長為 \(1\).

(1). 求橢圓 \(C\) 的方程;

解析: 由已知,取過橢圓的焦點且與長軸垂直的弦為\(x=c\)

代入橢圓方程,求解得弦長為\(|2y|=\cfrac{2b^2}{a}\)

由題意可得: \(\left\{\begin{array}{l}\cfrac{c}{a}=\cfrac{\sqrt{3}}{2}\\\cfrac{2b^{2}}{a}=1\\a^{2}=b^{2}+c^{2}\end{array}\right.,\) 解得: \(\left\{\begin{array}{l}a=2 \\ b=1\end{array}\right.\)

故橢圓 \(C\) 的方程為 \(: \cfrac{x^{2}}{4}+y^{2}=1\)

(2). 設點 \(M\) 為橢圓上位於第一象限內一動點, \(A, B\)分別為橢圓的左頂點和下頂點,直線 \(MB\)\(x\) 軸交於點 \(C\), 直線 \(MA\)\(y\) 軸交於點 \(D\),求證: 四邊形\(ABCD\) 的面積為定值.

解析: 橢圓 \(C\) 的方程為 \(: \cfrac{x^{2}}{4}+y^{2}=1\), 故\(A(-2,0), B(0,-1)\)

\(M(m, n)(m>0, n>0)\), 則 \(\cfrac{m^{2}}{4}+n^{2}=1\), 即 \(m^{2}+4n^{2}=4\)

又由於\(k_{_{BM}}=\cfrac{n-(-1)}{m-0}=\cfrac{n+1}{m}\),且經過點\((0,-1)\)

則直線 \(BM\) 的方程為 \(: y=\cfrac{n+1}{m}x-1\),令\(y=0\), 得 \(x_{_{C}}=\cfrac{m}{n+1}\)

同理, 直線 \(AM\) 的方程為 \(: y=\cfrac{n}{m+2}(x+2)\), 令 \(x=0\), 得 \(y_{_{D}}=\cfrac{2n}{m+2}\)

\(S_{ABCD}=\cfrac{1}{2}\cdot|AC|\cdot|BD|\)

\(=\cfrac{1}{2}\cdot|\cfrac{m}{n+1}+2|\cdot|\cfrac{2n}{m+2}+1|\)

\(=\cfrac{1}{2}\cdot\cfrac{(m+2n+2)^{2}}{(m+2)(n+1)}\)

\(=\cfrac{1}{2}\cdot\cfrac{m^{2}+4n^{2}+4+4mn+4m+8n}{mn+m+2n+2}\)注意數學公式的使用,\((a+b+c)^2\)\(=\)\(a^2\)\(+\)\(b^2\)\(+\)\(c^2\)\(+\)\(2ab\)\(+\)\(2bc\)\(+\)\(2ca\),可以使用多項式的乘法,自行推導\(\quad\)

\(=\cfrac{1}{2}\cdot\cfrac{4mn+4m+8n+8}{mn+m+2n+2}=2\)

即四邊形 \(ABCD\) 的面積為定值 \(2\).

【2021屆高三文科數學寒假作業3】已知橢圓 \(\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1\)\(a>b>0\) 的離心率為 \(\cfrac{\sqrt{2}}{2}\), 且過點 \((2,\sqrt{2})\)

(1). 求橢圓的標准方程;

解析:由題意 \(e=\cfrac{c}{a}=\cfrac{\sqrt{2}}{2}\), 由於過點 \((2,\sqrt{2})\),得到\(\cfrac{4}{{a}^{2}}+\cfrac{2}{{b}^{2}}=1\)

又由於 \(a^{2}={b}^{2}+{c}^{2}\),解得: \(a^{2}=8\)\(b^{2}=4\)

故橢圓的標准方程為 \(\cfrac{x^{2}}{8}+\cfrac{y^{2}}{4}=1\).

(2). 四邊形 \(ABCD\) 的頂點在橢圓上,且對角線 \(AC\)\(BD\) 過原點 \(O\),若\({k}_{_{AC}}\cdot{k}_{_{BD}}=-\cfrac{b^{2}}{a^{2}}\), 求證: 四邊形 \(ABCD\) 的面積為定值.

解析:①當直線 \(AB\) 斜率不存在時,設直線 \(AB\) 方程為\(x=m\),如圖所示,

\(A(m,-\sqrt{\cfrac{8-{m}^{2}}{2}})\)\(B(m,\sqrt{\cfrac{8-{m}^{2}}{2}})\)

又由於\({k}_{_{AC}}\cdot{k}_{_{BD}}=-\cfrac{b^{2}}{a^{2}}={k}_{_{OA}}\cdot{k}_{_{OB}}=-\cfrac{1}{2}\)

又由於\({k}_{_{OB}}=\cfrac{\sqrt{\cfrac{8-{m}^{2}}{2}}-0}{m-0}\)\({k}_{_{OA}}=\cfrac{-\sqrt{\cfrac{8-{m}^{2}}{2}}-0}{m-0}\)

\(\cfrac{\sqrt{\cfrac{8-m^{2}}{2}}}{m}\cdot\cfrac{-\sqrt{\cfrac{8-m^{2}}{2}}}{m}=-\cfrac{1}{2}\),解得, \(m=\pm 2\)

\(\pm\sqrt{\cfrac{8-m^{2}}{2}}=\pm\sqrt{2}\),則\(\triangle AOB\) 的底邊 \(AB=2\sqrt{2}\),高為\(|m|=2\)

\(S_{ABCD}=4\cdot S_{AOB}=4\times\cfrac{1}{2}\times|m|\times|AB|=8\sqrt{2}\)

②當直線 \(AB\) 斜率存在時,設直線 \(AB\) 方程為\(y=kx+m\),如圖所示,

設點 \(A({x}_{1}, {y}_{1})\), \({B}({x}_{2},{y}_{2})\)

聯立 \(\left\{\begin{array}{l}y=kx+m\\x^{2}+2y^{2}=8\end{array}\right.,\)\((1+2k^{2})x^{2}+4kmx+2m^{2}-8=0\)

\(\Delta=(4km)^{2}-4(1+2k^{2})(2m^{2}-8)=8(8k^{2}-m^{2}+4)>0\)

\({x}_{1}+{x}_{2}=\cfrac{-4km}{1+2{k}^{2}}\)\({x}_{1}{x}_{2}=\cfrac{2{m}^{2}-8}{1+2{k}^{2}}\)

由於 \(k_{_{OA}}\cdot k_{_{OB}}=-\cfrac{1}{2}\), 即 \(\cfrac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}=-\cfrac{1}{2}\)

所以,\({y}_{1}{y}_{2}=-\cfrac{1}{2}{x}_{1}{x}_{2}=-\cfrac{{m}^{2}-4}{1+2{k}^{2}}\)

又由於 \({y}_{1}{y}_{2}=({kx}_{1}+{m})({kx}_{2}+{m})={k}^{2}{x}_{1}{x}_{2}+{km}({x}_{1}+{x}_{2})+{m}^{2}\)

從而得到, \(k^{2}\cdot\cfrac{2m^{2}-8}{1+2k^{2}}+km\cdot\cfrac{-4km}{1+2k^{2}}+m^{2}=-\cfrac{m^{2}-4}{1+2k^{2}}\)

化簡得到, \(4{k}^{2}+2={m}^{2}\)

設原點到直線 \(AB\) 的距離為 \(d\), 則\(d=\cfrac{|m|}{\sqrt{1+k^2}}\),且\(AB=\sqrt{1+k^2}\sqrt{({x}_{1}+{x}_{2})^{2}-4 {x}_{1}{x}_{2}}\)

\(S_{\triangle AOB}=\cfrac{1}{2}\cdot|AB|\cdot d=\cfrac{1}{2}\cdot\sqrt{1+k^2}\sqrt{({x}_{1}+{x}_{2})^{2}-4 {x}_{1}{x}_{2}}\cdot\cfrac{|m|}{\sqrt{1+k^{2}}}\)

\(=\cfrac{|m|}{2}\cdot\sqrt{(\cfrac{-4km}{1+2{k}^{2}})^{2}-4\cdot\cfrac{2m^{2}-8}{1+2k^{2}}}\)

\(=\cfrac{|m|}{2}\sqrt{\cfrac{64k^2-8m^2+32}{(1+2k^2)^2}}=\cfrac{|m|}{2}\cfrac{\sqrt{64k^2+32-8m^2}}{1+2k^2}\)

\(=\cfrac{|m|}{2}\cfrac{\sqrt{16m^2-8m^2}}{\frac{m^2}{2}}=\cfrac{|m|\cdot 2\sqrt{2}|m|}{2\cdot\frac{m^2}{2}}\)

\(=2\sqrt{2}\)

所以,\(S_{ABCD}=4\cdot S_{\triangle AOB}=8\sqrt{2}\)由於直線\(AC\)經過橢圓的中心,故點\(A\)與點\(C\)關於原點對稱,同理點\(B\)與點\(D\)關於原點對稱,則可知\(S_{\triangle AOD}\)\(=\)\(S_{\triangle BOC}\)[區域對頂等面積],\(S_{\triangle AOB}\)\(=\)\(S_{\triangle COB}\)[由於等底同高,故等面積],\(\quad\)

綜上所述,四邊形 \(ABCD\) 的面積為定值\(8\sqrt{2}\).


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM