題目: 給定一個字符串 s,找到 s 中最長的回文子串。你可以假設 s 的最大長度為 1000。
示例 1:
輸入: "babad"
輸出: "bab"
注意: "aba" 也是一個有效答案
示例 2:
輸入: "cbbd"
輸出: "bb"
解題思路
對於一個子串而言,如果它是回文串,並且長度大於 2,那么將它首尾的兩個字母去除之后,它仍然是個回文串。
例如對於示例1中的字符串 "babad",若已知 “bab” 為回文串,則去掉首尾字母 “b” 之后,“a”仍然是回文串。若在回文串“bab”首尾加上同一個字符“c”,即“cbabc”, 仍然是回文串。因此,可以用動態規划來解答。
特殊情況:
- case 1:"a" 為回文串;
- case 2: "aa" 為回文串;
其余情況都可以用一個狀態轉移來表示:
dp(i,j)=(Si==Sj) ^ dp(i+1,j−1)
其中,dp[i][j] 表示 s[i][j] 是否為回文串
代碼
/**
* @param {string} s
* @return {string}
*/
var longestPalindrome = function(s) {
if(s.length == 0) return '';
let res = s[0];
const dp = [];
// 從后向前判斷回文串,逐步延申字符串
for(let i = s.length - 1; i >= 0; i--){
dp[i] = [];
for(let j = i; j < s.length; j++){
// case1: a
if(j - i === 0) dp[i][j] = true;
// case2: aa
else if(j - i == 1 && s[j] === s[i]) dp[i][j] = true;
// state transition
else if(s[i] === s[j] && dp[i + 1][j - 1]) dp[i][j] =true;
// update res
if(dp[i][j] && j - i + 1 > res.length) res = s.slice(i, j + 1);
}
}
return res;
};