一、實驗目的
科學技術中常常要求解常微分方程的定解問題,所謂數值解法就是求未知函數在一系列離散點處的近似值。
二、實驗原理
三、實驗程序
1. 尤拉公式程序
2、3、4的尤拉公式的程序參上改寫。
四、實驗內容
五、實驗代碼及運行結果
• MATLAB代碼:
定義函數: function [A1,A2,B1,B2,C1,C2]=euler23(a,b,n,y0) %歐拉法解一階常微分方程 %初始條件y0 h = (b-a)/n; %步長h %區域的左邊界a %區域的右邊界b x = a:h:b; m=length(x); %前向歐拉法 y = y0; for i=2:m y(i)=y(i-1)+h*oula(x(i-1),y(i-1)); A1(i)=x(i); A2(i)=y(i); end plot(x,y,'r-'); hold on; %改進歐拉法 y = y0; for i=2:m y(i)= y(i-1)+h/2*( oula(x(i-1),y(i-1))+oula(x(i),y(i-1))+h*(oula(x(i-1),x(i-1)))); B1(i)=x(i); B2(i)=y(i); end plot(x,y,'m-'); hold on; %歐拉兩步公式 y=y0; y(2)=y(1)+h*oula(x(1),y(1)); for i=2:m-1 y(i+1)=y(i-1)+2*h*oula(x(i),y(i)); C1(i)=x(i); C2(i)=y(i); end plot(x,y,'b-'); hold on; %精確解用作圖 xx = x; f = dsolve('Dy=-y+1','y(0)=0','x');%求出解析解 y = subs(f,xx); %將xx代入解析解,得到解析解對應的數值 plot(xx,y,'k--'); legend('前向歐拉法','改進歐拉法','歐拉兩步法','解析解'); function f=oula(x,y) f=-y+1; 命令行窗口: [A1,A2,B1,B2,C1,C2]=euler23(0,1,10,0)
運行結果:
N=50時:
N=100時:
故得精度越大時,幾種方法求解值與准確值越來越接近。
• 另解
clear; format long; a = 0; b = 1; h = 0.1; d = 0; res = forward(a, b, h, d); x = res(1,:); y = res(2,:); xx = x; f = dsolve('Dy=-y+1','y(0)=0','x'); z = subs(f,xx); y(2,:) = z; plot(x, y); function result = forward(a, b, h, y) n = (b-a)/h; x0 = a; x1 = a; y0 = y; result(1,1) = x0; result(2,1) = y0; for m = 0:n-1 x1 = x1 + h; f0 = 1-y0; d = y0 + h*f0; y1 = calculate(y0, x1, d, h); %result = calculate(x1, d, h); x0 = x1; y0 = y1; result(1, m+2) = x0; result(2, m+2) = y0; end end function result = calculate(y0, x1, y1, h) acc = -6; now = 0.0; z1 = y1; while now >= -6 z0 = z1; f0 =1-z0; z1 = y0 + h*f0; now = log10(abs(z1-z0)); end result = z1; end
運行結果: