Halcon仿射方式:
vector_angle_to_rigid (Row, Column, Phi, Row, Column, rad(180), HomMat2D)其中Row, Column, Phi是所選擇區域中心坐標以及相對於水平方向夾角,rad(180)為要旋轉的角度這個角度是任意值
hom_mat2d_identity( : : : HomMat2DIdentity)形成單位矩陣:
hom_mat2d_rotate( : : HomMat2D, Phi, Px, Py : HomMat2DRotate)
hom_mat2d_scale( : : HomMat2D, Sx, Sy, Px, Py : HomMat2DScale)
hom_mat2d_translate( : : HomMat2D, Tx, Ty : HomMat2DTranslate)
二、車牌識別
dev_close_window() read_image (Image, 'E:/欣奕華/項目/Halcon/STUDY/網絡課程筆記/3.仿射變換/車牌1.jpg') get_image_size (Image, Width, Height) dev_open_window (0, 0, Width, Height, 'black', WindowHandle) dev_display (Image) draw_rectangle2 (WindowHandle, Row, Column, Phi, Length1, Length2) gen_rectangle2 (Rectangle, Row, Column, Phi, Length1, Length2) area_center (Rectangle, Area, Row1, Column1) orientation_region (Rectangle, Phi1) vector_angle_to_rigid (Row1, Column1, Phi1, Row1, Column1, 3.14, HomMat2D) affine_trans_region (Rectangle, RegionAffineTrans1, HomMat2D, 'nearest_neighbor') affine_trans_image (Image, ImageAffinTrans, HomMat2D, 'constant', 'false') reduce_domain (ImageAffinTrans, RegionAffineTrans1, ImageReduced) rgb1_to_gray (ImageReduced, GrayImage) dev_display (GrayImage) threshold (GrayImage, Regions, 0, 66) connection (Regions, ConnectedRegions) select_shape (ConnectedRegions, SelectedRegions, ['area','width','height'], 'and', [1701.88,0,0], [5000,53.05,114.71]) sort_region (SelectedRegions, SortedRegions, 'character', 'true', 'column') area_center (SortedRegions, Area1, Row2, Column2) read_ocr_class_mlp ( 'Industrial_0-9A-Z_NoRej.omc', OCRHandle) do_ocr_multi_class_mlp (SortedRegions, GrayImage, OCRHandle, Class, Confidence) for I := 0 to 5 by 1 disp_message (WindowHandle, Class[I], 'image', Row2[I], Column2[I], 'black', 'true') endfor
上述代碼是自己寫的,下面是網絡課程,主要看他的注釋:
*1采集圖像 read_image (Image, 'E:/欣奕華/項目/Halcon/STUDY/Lesson ten_OCR/1.jpg') dev_close_window () dev_open_window (0, 0, 512, 512, 'black', WindowHandle) dev_display (Image) *2預處理之車牌定位,一般定位有兩種,一個是blob像素團塊定位,一個是模板匹配定位,然后幾何變換轉正 decompose3 (Image, Red, Green, Blue) trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv') *注意這里的顏色通道轉換是為了方便圖像分割,也就是車牌定位,這里用的比較通用簡單的blob,在實際項目中需要考慮光照等的影響進行微調優化 *這里的二值化是進行一個blob車牌定位 threshold (Saturation, Regions, 182, 255) opening_rectangle1 (Regions, RegionOpening, 6, 6) shape_trans (RegionOpening, RegionTrans, 'rectangle2') *接下來求這個區域的角度和中心點,便於仿射變換轉正 orientation_region (RegionTrans, Phi) area_center (RegionTrans, Area, Row, Column) *開始求解仿射變換之旋轉矩陣,這里要注意是轉到180度還是0度,需要注意你求解角度時的極軸方向,具體可以看鏈接視頻 vector_angle_to_rigid (Row, Column, Phi, Row, Column, rad(180), HomMat2D) *將圖像和區域都做這個旋轉變換,然后摳圖,再進行圖像分割 affine_trans_image (Image, ImageAffinTrans, HomMat2D, 'constant', 'false') affine_trans_region (RegionTrans, RegionAffineTrans, HomMat2D, 'nearest_neighbor') reduce_domain (ImageAffinTrans, RegionAffineTrans, ImageReduced) rgb1_to_gray (ImageReduced, GrayImage) invert_image (GrayImage, ImageInvert) threshold (GrayImage, Regions2, 92,135) opening_rectangle1 (Regions2, RegionOpening1, 3, 3) connection (RegionOpening1, ConnectedRegions) select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 568.08, 1372.46) *字符就被提取了,注意這里我暫時不是識別漢字,要識別漢字也是可以的,可以看視頻鏈接 *進行字符排序方便識別后觀察,因為人都是習慣從左到右 sort_region (SelectedRegions, SortedRegions, 'first_point', 'true', 'column') *4識別顯示,注意這里識別用的halcon自帶字庫,同時帶NoRej的表示非拒絕,識別要求不嚴格 read_ocr_class_mlp ('Industrial_0-9A-Z_NoRej.omc', OCRHandle) *注意ocr套路,一般可以多個區域一起識別,也可以單個區域識別,注意上面的工作就是為了得到這個區域 do_ocr_multi_class_mlp (SortedRegions, ImageInvert, OCRHandle, Class, Confidence) area_center (SortedRegions, Area1, Row1, Column1) for index := 0 to 5 by 1 disp_message (WindowHandle, Class[index], 'window', Row1[0], Column1[index], 'black', 'true') endfor