Verilog -- 改進的Booth乘法(基4)


Verilog -- 改進的Booth乘法(基4)

@(verilog)

1. 背景

之前已經介紹過Booth乘法算法的基本原理以及代碼,實際上之前的算法是基2的booth算法,每次對乘數編碼都只考慮兩位。因此在實際實現時往往效率不高,考慮最壞情況,使用基2的booth算法計算兩個8位數據的乘法,除了編碼復雜,計算時需要累加8個部分積,可見最壞情況跟普通陣列乘法器需要累加的部分積個數一樣,因此代價不低。

改進的Booth乘法為了減少部分積的累加,現在基本很少采用基2的booth算法了,而是采用基4甚至基8的形式,下面主要介紹一下基4的booth算法。

2. 原理

跟基2的算法一樣,假設A和B是乘數和被乘數,且有:

\[\begin{align} A &= \color{green}{(a_{2n+1}a_{2n})}a_{2n-1}a_{2n-2}\dots a_{1}a_{0}\color{green}{(a_{-1})} \tag{1}\\ B &= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ b_{2n-1}b_{2n-2}\dots b_{1}b_{0} \tag{2} \end{align} \]

其中,\(a_{-1}\)是末尾補的0,\(a_{2n},a_{2n+1}\)是擴展的兩位符號位。可以將乘數A表示為:

\[A = (-1\cdot a_{2n-1})2^{2n-1}+ a_{2n-2}\cdot2^{2n-2}+\cdots + a_1\cdot 2+a_0 \]

同樣可以將兩數的積表示為:

\[\begin{align} AB &= (a_{-1}+a_0-2a_1)\times B\times 2^0 + (a_1+a_2-2a_3)\times B\times 2^2 \tag{}\\ &+(a_{3}+a_4-a_5)\times B\times 2^4 +\dots \tag{}\\ &+(a_{2n-1}+a_{2n}-2a_{2n+1}) \times B\times 2^{2n} \tag{}\\ &=\color{red}{B\times [\sum_{k=0}^{n}(a_{2k-1}+a_{2k}-2a_{2k+1})\cdot 2^{2k}]} \tag{3} \\ &=B\times Val(A) \tag{} \end{align} \]

紅色部分即為基4booth的編碼方式。

3. 算法實現

有了公式就可以比較方便地推導算法步驟了,首先給出基4booth的編碼表:

乘數位 \((a_{2k-1}+a_{2k}-2a_{2k+1})\) 編碼操作
000 0
001 +B
010 +B
011 +2B
100 -2B
101 -B
110 -B
111 0

所有操作過后都會移位兩次

示例:
\(A = -7,B = -3\)
首先,計算編碼需要的操作數:
\(+B = 1111 1101\)
\(-B = 0000 0011\)
\(+2B = 1111 1010\)
\(-2B = 0000 0110\)
下面對\(A\)進行編碼:

\(A => (11) 1001 (0)=> (111) (100) (010)=> (0) (-2X) (+X)\)

計算過程:

+ 1111 1101    +B 
+ 0001 10      -2B << <<
-----------
= 0001 0101    = 21

可以發現,對於8bit的乘法,基4的booth算法最多只需要計算4個部分積的累加,極大簡化了求和邏輯。

4. Verilog 代碼

verilog代碼參考的是fanhu大神寫的,鏈接: https://pan.baidu.com/s/1bR0SK0NeeaenLC73E1kKNg 提取碼: 4kat
下面的代碼針對上面的做了部分修改。

`timescale 1ns/1ps

module booth_radix4 #(
  parameter WIDTH_M = 8,
  parameter WIDTH_R = 8
  )(
  input                             clk,
  input                             rstn,
  input                             vld_in,
  input  [WIDTH_M-1:0]              multiplicand,
  input  [WIDTH_R-1:0]              multiplier,
  output [WIDTH_M+WIDTH_R-1:0]      mul_out,
  output reg done
);
parameter   IDLE   = 2'b00,
            ADD    = 2'b01,
            SHIFT  = 2'b11,
            OUTPUT = 2'b10;
			
reg  [1:0]  current_state, next_state;  	
		
reg [WIDTH_M+WIDTH_R+2:0] add1;
reg [WIDTH_M+WIDTH_R+2:0] sub1;
reg [WIDTH_M+WIDTH_R+2:0] add_x2;
reg [WIDTH_M+WIDTH_R+2:0] sub_x2;
reg [WIDTH_M+WIDTH_R+2:0] p_dct;
reg [WIDTH_R-1:0] count;

always @(posedge clk or negedge rstn) 
  if(!rstn) current_state = IDLE;
  else if (!vld_in) current_state = IDLE;
  else current_state <= next_state;
  
always @* begin
  next_state = 2'bx;
  case (current_state)
    IDLE : if (vld_in) next_state = ADD;
    else               next_state = IDLE;
    ADD  : next_state = SHIFT  ; 
    SHIFT : if (count==WIDTH_R/2) next_state = OUTPUT;
            else                  next_state = ADD;
    OUTPUT : next_state = IDLE;
	default: next_state = IDLE;
  endcase
end  


always @(posedge clk or negedge rstn) begin
  if(!rstn) begin
    {add1,sub1,add_x2,sub_x2,p_dct,count,done} <= 0;
  end else begin
    case(current_state) 
      IDLE: begin
        add1     <= {{2{multiplicand[WIDTH_R-1]}},multiplicand,{WIDTH_R+1{1'b0}}};
        sub1     <= {-{{2{multiplicand[WIDTH_R-1]}},multiplicand},{WIDTH_R+1{1'b0}}};
        add_x2   <= {{multiplicand[WIDTH_M-1],multiplicand,1'b0},{WIDTH_R+1{1'b0}}};
        sub_x2   <= {-{multiplicand[WIDTH_M-1],multiplicand,1'b0},{WIDTH_R+1{1'b0}}};
        p_dct    <= {{WIDTH_M+1{1'b0}},multiplier,1'b0}  ;
        count    <= 0;
        done     <= 0;
      end
      ADD:begin
        case(p_dct[2:0])
          3'b000,3'b111: p_dct <= p_dct;
          3'b001,3'b010: p_dct <= p_dct+add1;
          3'b101,3'b110: p_dct <= p_dct+sub1;
          3'b100:        p_dct <= p_dct+sub_x2;	   
          3'b011:        p_dct <= p_dct+add_x2;
          default:       p_dct <= p_dct;
        endcase
        count <= count+1;
      end
      SHIFT:
        p_dct <= {p_dct[WIDTH_M+WIDTH_R+2],p_dct[WIDTH_M+WIDTH_R+2],p_dct[WIDTH_M+WIDTH_R+2:2]};

      OUTPUT:begin
        done  <= 1;	 
      end		  
    endcase
  end   
end

assign mul_out = p_dct[WIDTH_M+WIDTH_R:1];

endmodule

testbench:


`timescale 1ns/1ps

module booth_radix4_tb();
`define TEST_WIDTH 4

parameter WIDTH_M = `TEST_WIDTH;
parameter WIDTH_R = `TEST_WIDTH;

reg                 clk;
reg                 rstn;
reg                 vld_in;
reg   [WIDTH_M-1:0] multiplicand;
reg   [WIDTH_R-1:0] multiplier;

wire   [WIDTH_M+WIDTH_R-1:0] mul_out;
wire                         done;
//輸入 :要定義有符號和符號,輸出:無要求
wire signed [`TEST_WIDTH-1:0]                m1_in;
wire signed [`TEST_WIDTH-1:0]                m2_in;

reg  signed [2*`TEST_WIDTH-1:0] product_ref;
reg  [2*`TEST_WIDTH-1:0] product_ref_u;

assign m1_in = multiplier[`TEST_WIDTH-1:0];
assign m2_in = multiplicand[`TEST_WIDTH-1:0];


always #1 clk = ~clk;
integer i,j;
integer num_good;
initial begin
  clk = 0;
  vld_in = 0;
  multiplicand = 0;
  multiplier = 0;
  num_good = 0;
  rstn = 1;
  #4 rstn = 0; #2 rstn = 1;
  repeat(2) @(posedge clk);
  for (i = 0; i < (1<<`TEST_WIDTH); i = i + 1) begin
    for (j = 0; j < (1<<`TEST_WIDTH); j = j + 1) begin
      vld_in = 1;
      wait (done == 0);
      wait (done == 1);
      product_ref=m1_in*m2_in;
      product_ref_u=m1_in*m2_in;
      if (product_ref != mul_out) begin
        $display("multiplier = %d multiplicand = %d proudct =%d",m1_in,m2_in,mul_out);
        @(posedge clk);
        $stop;
      end
      else begin
        num_good = num_good + 1;
      end
      multiplicand = multiplicand + 1;
    end
    multiplier = multiplier + 1;
  end
  $display("sim done. num good = %d",num_good);
  $finish;

end

booth_radix4 #(  .WIDTH_M ( WIDTH_M ),
                 .WIDTH_R ( WIDTH_R ))
U_BOOTH_RADIX4_0
(  .clk          ( clk          ),
   .rstn         ( rstn         ),
   .vld_in       ( vld_in       ),
   .multiplicand ( multiplicand ),
   .multiplier   ( multiplier   ),
   .mul_out      ( mul_out      ),
   .done         ( done         ));


initial begin
  $fsdbDumpvars();
  $fsdbDumpMDA();
  $dumpvars();
end

endmodule


仿真波形圖:
首先num_good表示正確的計算數目,因為上面我只測試了4位寬度的所有有符號乘法,因此總的計算個數為16*16=256個,這邊顯示全部正確。

下面是波形圖:


PS:跟之前寫的基2的算法相比,這里如果位寬改為10,經過仿真得到的計算周期為12周期幾乎比基2減少了一半。(之前寫的基2在計算10bit時需要21個周期)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM