知識點:
調和級數(即f(n))至今沒有一個完全正確的公式,但歐拉給出過一個近似公式:(n很大時)
f(n)≈ln(n)+C+1/2*n
歐拉常數值:C≈0.57721566490153286060651209
In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
In this problem, you are given n, you have to find Hn.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
Output
For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.
Sample Input
12
1
2
3
4
5
6
7
8
9
90000000
99999999
100000000
Sample Output
Case 1: 1
Case 2: 1.5
Case 3: 1.8333333333
Case 4: 2.0833333333
Case 5: 2.2833333333
Case 6: 2.450
Case 7: 2.5928571429
Case 8: 2.7178571429
Case 9: 2.8289682540
Case 10: 18.8925358988
Case 11: 18.9978964039
Case 12: 18.9978964139

#include <map> #include <stack> #include <queue> #include <cmath> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define ll long long using namespace std; const double r=0.57721566490153286060651209; double a[10004]; int main() { a[1]=1; for(int i=2;i<=10000;i++) { a[i]=a[i-1]+1.0/i; } int T,n; scanf("%d",&T); for(int k=1;k<=T;k++) { scanf("%d",&n); if(n<=10000) { printf("Case %d: %.10lf\n",k,a[n]); } else { double ans=log(n)+r+1.0/(2*n); printf("Case %d: %.10lf\n",k,ans); } } return 0; }