題意:求f(n)=1/1+1/2+1/3+1/4…1/n (1 ≤ n ≤ 108).,精確到10-8 (原題在文末)
知識點:
調和級數(即f(n))至今沒有一個完全正確的公式,但歐拉給出過一個近似公式:(n很大時)
f(n)≈ln(n)+C+1/2*n
歐拉常數值:C≈0.57721566490153286060651209
c++ math庫中,log即為ln。
題解:
公式:f(n)=ln(n)+C+1/(2*n);
n很小時直接求,此時公式不是很准。
#include <iostream> #include <cstdio> #include <cmath> using namespace std; const double r=0.57721566490153286060651209; //歐拉常數 double a[10000]; int main() { a[1]=1; for (int i=2;i<10000;i++) { a[i]=a[i-1]+1.0/i; } int n; cin>>n; for (int kase=1;kase<=n;kase++) { int n; cin>>n; if (n<10000) { printf("Case %d: %.10lf\n",kase,a[n]); } else { double a=log(n)+r+1.0/(2*n); //double a=log(n+1)+r; printf("Case %d: %.10lf\n",kase,a); } } return 0; }
其實可以打表水過,畢竟公式記不住是硬傷啊。。
10e8全打表必定MLE,而每40個數記錄一個結果,即分別記錄1/40,1/80,1/120,...,1/10e8,這樣對於輸入的每個n,最多只需執行39次運算,大大節省了時間,空間上也夠了。
#include <iostream> #include <algorithm> #include <cstdio> #include <cstring> #include <cmath> using namespace std; const int maxn = 2500001; double a[maxn] = {0.0, 1.0}; int main() { int t, n, ca = 1; double s = 1.0; for(int i = 2; i < 100000001; i++) { s += (1.0 / i); if(i % 40 == 0) a[i/40] = s; } scanf("%d", &t); while(t--) { scanf("%d", &n); int x = n / 40; s = a[x]; for(int i = 40 * x + 1; i <= n; i++) s += (1.0 / i); printf("Case %d: %.10lf\n", ca++, s); } return 0; }
Harmonic Number
Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
Hn=1/1+1/2+1/3+1/4…1/n
In this problem, you are given n, you have to find Hn.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
Output
For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.
Sample Input
12
1
2
3
4
5
6
7
8
9
90000000
99999999
100000000
Sample Output
Case 1: 1
Case 2: 1.5
Case 3: 1.8333333333
Case 4: 2.0833333333
Case 5: 2.2833333333
Case 6: 2.450
Case 7: 2.5928571429
Case 8: 2.7178571429
Case 9: 2.8289682540
Case 10: 18.8925358988
Case 11: 18.9978964039
Case 12: 18.9978964139