斐波那契數列就是黃金分割數列
第一項加第二項等於第三項,以此類推
第二項加第三項等於第四項
代碼如下
這一段代碼實現fib(n)函數返回第n項,PrintFN(m,n,i)函數實現輸出第i項斐波那契數列,輸出在m到n之間的斐波那契數的數量
def fib(n) :
x = 0
x1 = 1
x2 = 1
i = 2
while i <= n :
i = i + 1
x =x1 + x2
x1 = x2
x2 = x
if (n == 1 or n == 2) :
x = 1
return x
def PrintFN(m,n,i):
c = i
index = 0
while fib(i) < 10000 :
i = i + 1
count = i
i = 1
while i < count :
i = i + 1
if fib(i) >= m and fib(i) <= n :
index = index + 1
v = fib(c)
v = str(v)
c = str(c)
print("fib(" + c + ")" + "=" + v)
print(index)
m,n,i=input().split()
n=int(n)
m=int(m)
i=int(i)
PrintFN(m,n,i)
另一段代碼如下
這一段代碼實現fib(n)函數返回第n項,PrintFN(m,n,i)函數實現輸出在m到n之間的所有的斐波那契數
如果沒有,顯示No Fibonacci number
def fib(n) :
x = 0
x1 = 1
x2 = 1
i = 2
while i <= n :
i = i + 1
x =x1 + x2
x1 = x2
x2 = x
if (n == 1 or n == 2) :
x = 1
return x
def PrintFN(m,n,i):
index = 0
flag = 0
while fib(i) < 10000 :
i = i + 1
count = i
i = 1
while i < count :
i = i + 1
if fib(i) >= m and fib(i) <= n :
flag = 1
index = index + 1
if index == 1 :
print(fib(i))
continue
print(fib(i))
if (flag == 0) :
print("No Fibonacci number")
m,n,i=input().split()
n=int(n)
m=int(m)
i=int(i)
PrintFN(m,n,i)