深入理解傅里葉變換


這原本是我在知乎上對傅立葉變換、拉普拉斯變換、Z變換的聯系?為什么要進行這些變換。研究的都是什么?問題的回答,實際上是我在本科學習數學和信號處理期間的思考,知乎上的答案因為寫得倉促,只寫了一些大致思想,沒有具體展開,也沒有圖,比較難以理解,這里重新整理了一下,匯成此文。

本文要求讀者需要在對傅里葉變換有一定的了解的基礎之上閱讀,至少要知道怎么算傅里葉變換。 此外部分地方要求讀者有一定的微分方程基礎,至少會求簡諧振子的二階常微分方程吧。

什么是傅里葉變換

高等數學中一般是從周期函數的傅里葉級數開始介紹的,這里也不例外。簡單的說,從高中我們就學過一個理想的波可以用三角函數來描述,但是實際上的波可以是各種奇形怪狀的。首先我們來看具有固定周期的波,下圖中展示了4種常見的周期波。傅里葉級數告訴我們,這些周期信號都可以分解為有限或無限個正弦波或余弦波的疊加,且這些波的頻率都是原始信號頻率的整數倍。

 

這里被稱為這些波的基頻,代表直流系數,系數被稱為幅度,被稱作相位。根據幅度和相位可以利用反變換恢復信號的波形,因此幅度和相位包含了信號的全部信息。這里的幅度關於頻率的函數,我們稱之為頻譜,相位關於頻率的函數,稱之為相位譜。

waveforms.svg

下圖是矩形波分解為多個正弦波的示意圖,隨着正弦波數目的增加,可以無限地逼近矩形波。 對於非周期信號,我們不能簡單地將它展開為可數個正弦波的疊加,但是可以利用傅里葉變換展開為不可數的正弦波的疊加,其表達式可以通過簡單得到。

 

我們日常遇到的琴音、震動等都可以分解為正弦波的疊加,電路中的周期電壓信號等信號都可以分解為正弦波的疊加。 那么問題來了,為什么我們要將信號分解為正弦波的疊加呢?這里面包含兩個問題,為什么要分解?為什么是正弦波(或余弦波),可不可以是其他的波?另一個問題是對通信的同學的,我們學過多個變換那么這些變換之間有哪些關系? 在下面的篇章中,我將回答這三個問題。

fourier_series.svg

為什么要分解為正弦波的疊加

這個問題可以追溯到傅里葉變換的創始人傅里葉解熱傳導方程的時候,因為熱傳導方程要求讀者對熱力學有一定了解,這里我以簡諧振子系統為例來說明這個問題。沒有阻尼的簡諧振子系統可以用下面這個微分方程來描述

 

分別代表位移、時間、系統固有頻率和外界驅動力。當沒有外界驅動力時,這個系統有通解

 

現在我們考慮存在外界驅動力的場景,熟悉常微分方程理論的可以知道此時的通解是上述其次方程的通解(恆為0)加上一個特解,所謂特解就是某個滿足上述非齊次方程(不恆為0)的任意一個接!那為什么能做這種分解呢?原因在於這是一個線性系統,或者說這個方程是一個線性方程,因此遵循疊加原理,可以簡單的證明這個一般性結論。假設線性系統可以由線性微分方程來描述

 

是線性算子,你可以簡單地理解為諧振子方程中的左邊操作。如果分別是其次方程通解和非齊次方程特解,即他們滿足

 

那么將這兩個式子相加,就可以得到

 

因此,只剩下一個問題,對於給定的驅動力,怎么找特解的問題了。 也許你還記得在高數的書上,對為三角函數和指數函數時,可以有和形式相同的特解。 例如時,可以假定非齊次方程也有這種形式的特解,代入原方程,求出待定常數可得特解。指數形式的驅動力也類似,那么對於其他形式的驅動力,怎么求特解呢?很簡單,利用線性疊加原理,我如果求出很多個為正弦驅動力下的特解,並且如果可以表達為這些正弦波的疊加,那么特解不就可以用這些特解的疊加得到了么?用數學語言表述就是

 

上面第二個式子右邊如果等於,那么左邊的就是原齊次方程的特解。 簡單地說,就是將驅動力做傅里葉變換(如果是周期驅動力則展開為傅里葉級數),求出每個基驅動力的特解,然后疊加得到特解。當然實際求解不用那么繞,以簡諧振動方程為例,直接對方程左右兩邊做傅里葉變換即得

 

上式帶尖頭的函數代表時域函數的傅里葉變換,這是一個代數方程,容易求得

 

通過上述描述,我們可以看到,將一個函數做傅里葉變換或者展開為傅里葉級數,可以幫助我們求解線性微分方程,或者從實際意義來說,可以幫助我們分析一個線性系統對外界做出如何響應!之所以能這樣展開,是因為我們分析的是線性系統,如果是非線性系統就不能這樣操作了。至於為什么是三角函數,我在下面將會回答,接下來我們先來看看更多的例子。

傅里葉變換與信號系統

這里,我們對通信相關的領域再舉一個例子,來說明展開為三角函數(或者復指數函數)的重要性。這種分析,我們稱之為傅里葉分析,或者叫頻譜分析。

一個信號,通常用一個時間的函數來表示,這樣簡單直觀,因為它的函數圖像可以看做信號的波形,比如聲波和水波等等。很多時候,對信號的處理是很特殊的,比如說線性電路會將輸入的正弦信號處理后,輸出仍然是正弦信號,只是幅度和相位有一個變化。這是因為線性電路都可以用常系數線性微分方程來描述,輸入信號可以看做外界驅動力,輸出可以看做系統地響應,這和上面的諧振子方程類似。因此,如果我們將信號全部分解成正弦信號的線性組合(傅里葉變換),那么就可以用一個傳遞函數來描述這個線性系統。倘若這個信號很特殊,例如,傅里葉變換在數學上不存在,這個時候就引入拉普拉斯變換來解決這個問題。這樣一個線性系統都可以用一個傳遞函數來表示。所以,從這里可以看到將信號分解為正弦函數(傅里葉變換)或者 復指數函數(拉普拉斯變換)對分析線性系統也是至關重要的。

傅里葉變換與量子力學

量子力學的波函數可以用多種不同的表象來描述,例如坐標表象、動量表象、能量表象等,不同表象之間的變換實際上是希爾伯特空間的一個幺正變換,其中坐標表象和動量表象之間的變換就是傅里葉變換。

 

傅里葉變換、拉普拉斯、Z變換、離散傅里葉變換的關系

信號處理中經常要對信號做各種變換,其中傅里葉變換、拉普拉斯、Z變換、離散傅里葉變換是最基礎的幾個變換。 他們都是為了對信號做頻譜分析而采用的變換,只不過被變換的信號會有一些差異。

如果只關心信號本身,不關心系統,這幾個變換的關系可以通過下面這樣一個過程聯系起來。

從模擬信號開始,如果模型信號能量是有限的,那么我們可以對它做傅里葉變換,把它用頻域表達為。如果信號的能量是無限的,那么傅里葉變換將不會收斂,這種時候可以對它做拉普拉斯變換。 如果我們將拉普拉斯的域畫出來,他是一個復平面,拉普拉斯變換是這個復平面上的一個復變函數。而這個函數沿虛軸的值就是傅里葉變換。

LaplaceFourier

拉普拉斯變換和傅里葉變換廣泛應用在模擬電路分析當中,下圖就是對模擬電路中基本元件的域建模示意圖,當時,就是傅里葉變換了。

S-Domain_circuit_equivalents

需要明確一個觀點,不管使用時域還是頻域(或s域)來表示一個信號,他們表示的都是同一個信號!也就是說,上面的時域表達、頻域表達和域表達都表示的是同一個模擬信號。關於這一點,你可以從線性空間的角度理解。同一個信號,如果采用不同的坐標框架(或者說基向量),那么他們的坐標就不同。例如,采用作為坐標,那么信號就可以表示為,而采用則表示為傅里葉變換的形式。 兩個不同坐標框架下,同一個向量的坐標可以通過一個線性變換聯系起來,如果是有限維的空間,則可以表示為一個矩陣,在這里是無限維,這個線性變換就是傅里葉變換。

到現在,對信號的形式還沒有多少假定,如果信號是帶寬受限信號,也就是說只在一個小范圍內(如)不為0。之所以要做這個假定以及這個假定的合理性是根據實際需要而定的。在一個通信系統或者信號處理系統中,無限帶寬的信號是無法處理的,而且一般接受信號的期間都會有一定的帶寬,所以這是對實際中的信號的一種理想假設。現代的信號處理系統多是數字信號處理系統,即使是模擬系統,現在也多將復雜的處理放到數字信號處理子系統端進行處理,這兩個系統之間通過 AD、DA 連接起來。根據采樣定理,只要采樣的頻率足夠高(大於兩倍帶寬),就可以無失真地將信號還原出來。那么采樣對信號的影響是什么呢?從s平面來看,時域的采樣將沿虛軸方向作周期延拓!這個性質從數學上可以很容易驗證。下圖顯示的是就是采樣對信號頻譜的影響,只畫出虛軸上的圖像。這個性質也很好的解釋了為什么要兩倍的采樣頻率,這樣才能使得周期延拓后頻譜不會重疊到一起。設是采樣頻率,則采樣后信號在域可以表達為

 

sampling

對於采樣后的信號,可以利用指數變換將域的帶狀區域變換到單位圓內。這就是z變換,它可以看做拉普拉斯變換的一種特殊形式,即做了一個代換,是采樣頻率。這個變換將信號從s域變換到z域。請注意,s域和z域表示的是同一個信號,即采樣完了之后的信號,只有采樣才會改變信號本身!從復平面上來看,這個變換將與軸平行的條帶變換到z平面的一個單葉分支,並且將虛軸映射到單位圓。時也稱作離散時間傅里葉變換(DTFT)。你會看到前面采樣導致的周期延拓產生的條帶重疊在一起了,因為具有周期性,所以z域不同的分支的函數值是相同的。換句話說,如果沒有采樣,直接進行z變換,將會得到一個多值的復變函數!所以一般只對采樣完了后的信號做z變換!

 

這里講了時域的采樣,時域采樣后,信號只有間的頻譜,即最高頻率只有采樣頻率一半,但是要記錄這樣一個信號,仍然需要無限大的存儲空間,可以進一步對頻域進行采樣。如果時間有限(實際上這與頻率受限互相矛盾,但大多數信號近似成立)的信號,那么通過頻域采樣(時域做周期擴展)可以不失真地從采樣的信號中恢復原始信號。並且信號長度是有限的,這就是離散傅里葉變換(DFT),它有著名的快速算法快速傅里葉變換(FFT)。為什么DFT這么重要呢,因為計算機要有效地對一般的信號做傅里葉變換,都是用DFT來實現的,除非信號具有簡單的解析表達式!利用上述關系,可以推導出DFT在第k個頻點的值為

 

上述推導利用到兩個基本公式

 

總結起來說,就是對於一個線性系統,輸入輸出是線性關系的,不論是線性電路還是光路,只要可以用一個線性方程或線性微分方程(如拉普拉斯方程、泊松方程等)來描述的系統,都可以通過傅里葉分析從頻域來分析這個系統的特性,比單純從時域分析要強大得多!兩個著名的應用例子就是線性電路和傅里葉光學(信息光學)。甚至非線性系統,也在很多情況里面使用線性系統的東西!所以傅里葉變換才這么重要!你看最早傅里葉最早也是為了求解熱傳導方程(那里其實也可以看做一個線性系統)!

傅里葉變換的思想還在不同領域有很多演變,比如在信號處理中的小波變換,它也是采用一組基函數來表達信號,只不過克服了傅里葉變換不能同時做時頻分析的問題。

傅里葉變換特殊的原因解釋

最后,我從純數學的角度說一下傅里葉變化到底是什么。 如果我們把函數看做向量,那么這些函數在加法和數乘兩種運算下構成一個線性空間。 如果我們定義內積

 

並且限定該集合是有界函數的子集,所謂有界是指內積有界。 那么上述線性空間就是一個希爾伯特空間。這里我們忽略這些嚴格的泛函分析中的定義,就簡單地與歐式空間中的向量和內積進行類比即可。 在這種類比下,一個函數就是一個向量。

在這種類比下(嚴格的證明需要用泛函分析那一套,這里我們只關注直觀的圖像理解),傅里葉變換就是這個向量空間中的一個幺正變換! 我們知道,歐式空間中的線性變換都可以用一個矩陣A來表示,即變換

 

表示把向量x通過變換A變換為b!傅里葉變換就把時域函數f(t)變換到頻域函數F(w)! 利用傅里葉變換的基本性質,容易驗證這個變換是一個幺正變換。

我們知道,線性變換的本質就是選取的基向量不同。向量的每一個坐標就是對應基向量前面的系數!

 

那么在函數空間中,基向量是什么呢?在時域基向量可以看成delta函數

 

這里的積分可以類比於前面的求和,可以類比於基向量成為基函數,f(s)可以類比於是基函數前面的系數!

同樣的類比,傅里葉變換到頻域選取的基函數是

 

F(w)就是基函數前面的系數。傅里葉變換就是在這兩組基函數間的線性變換!

那么,問題來了,線性變換這么多,為什么傅里葉變換這么特殊?

還記得線性代數中的線性方程Ax=b嗎?解這個方程的方法很多,高斯消元法是最常用的方法之一。 但是如果A是一個對角方陣,那么這個向量版的線性方程可以變為多個獨立的代數方程!

 

這種情況下,很容易求得!

上述情況過於特殊,我們考慮更一般的情況,如果A是對稱方陣,那么根據線性空間的特征值理論,可以找到矩陣A的所有互相正交的特征向量和特征值,然后將向量x和b表示成特征向量的組合。由於特征向量的正交關系,矩陣的代數方程可以化為n個標量代數方程

 

是不是很神奇!!一個向量版的線性方程通過重新選取了一組基向量變成多個獨立的代數一次方程!

你會問這跟傅里葉變換有毛關系?別急,我們再來看非齊次線性常微分方程

 

如果把左邊的線性算子部分看做線性變換,那么這個方程完全可以和上述向量版的線性方程進行類比! 把算子看做線性變換,那么我們可以采用上述類似的思路,把這個方程變成多個獨立的代數方程嗎? 答案是肯定的,利用該算子的特征函數作為基函數重新選取基函數即可!可以驗證指數函數是該的特征函數,對應的特征值是

 

利用相似的思路,我門把函數都表示為基函數的線性組合

 

那么這樣一來,前述微分方程變成了多個標量線性代數方程!

 

其實這個過程也可以看做對原始方程左右兩邊同時做傅里葉變換!這也是傅里葉變換求解常系數微分方程的理論基礎!

在常系數線性偏微分方程中也有類似結論!例如,考慮有源的拉普拉斯方程

 

容易驗證基函數(其實就是格林函數)

 

是拉普拉斯算子的特征函數!將場和源按照基函數展開,就可以將原來的拉普拉斯方程變為多個標量代數線性方程

 

上述傅里葉變換也可以用拉普拉斯變換替換,結論一樣! 以上是我在上數理方程課程的時候體會到的。歸納起來,就是說傅里葉變換就是線性空間中的一個特殊的正交變換!他之所以特殊是因為指數函數是常系數微分算子的特征函數!而自然界常見的規律大多是用常系數微分方程描述,信號系統中更是常見,線性時不變系統都可以利用常系數微分方程描述,這使得傅里葉變換應用十分廣泛!

其他微分算子的特征函數舉例

對於常系數線性微分算子,可以用指數函數作為基函數展開,而對於變系數線性微分算子,其基函數就不再是簡單的指數函數了。 但是上述思想仍然可以利用,只不過基函數是一些特殊函數,如貝塞爾函數、勒讓德多項書函數等等!

所謂常系數微分算子就是具有這種形式的微分算子

 

對於變系數的微分算子,是自變量的函數,這種算子的特征函數並沒有一般性的結論。 基本上每一類算子都會有自己特殊的特征函數, 這里列舉幾個我遇到過多次的特征函數及變系數算子。

柱坐標下的貝塞爾函數是下述微分算子的特征函數

 

球坐標下的勒讓德多項式

 

它是下述微分算子的特征函數,這是一個變系數的微分算子

 

拉蓋爾多項式

 

這樣的例子還有很多,這些函數實際上都是一個函數族,這些函數互相正交,這和實對稱陣的本征向量互相正交的性質一樣,這里的線性算子也是其泛函空間上的對稱軛米算子。這些函數族構成一組完備正交基,可以表達對應泛函空間中的任意函數。這和傅里葉變換的基函數——復指數函數一樣。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM