#先上代碼后補筆記#
#可以直接復制粘貼使用的MATLAB函數!#
1. 定步長牛頓-柯茨積分公式
function [ integration ] = CompoInt( func, left, right, step, mode ) % 分段積分牛頓-柯茨公式; % 輸入5個參數:被積函數(FUNCTIONHANDLE)'func',積分上下界'left'/'right',步長'step', % 模式mode共三種('midpoint','trapezoid','simpson'); % 返回積分值; switch mode % 僅僅是公式不同 case 'midpoint' node = left; integration = 0; while (node + step <= right) % 按照給定步長開始分段積分 pieceInt = step*(func(node + step/2)); % 使用中點積分公式 integration = integration + pieceInt; node = node + step; end if (node < right) % 補齊最后一段積分 pieceInt = (right - node)*(func((node + right)/2)); integration = integration + pieceInt; end case 'trapezoid' node = left; integration = 0; while (node + step <= right) pieceInt = step*(func(node) + func(node + step))/2; % 使用梯形公式 integration = integration + pieceInt; node = node + step; end if (node < right) pieceInt = (right - node)*(func(node) + func(right))/2; integration = integration + pieceInt; end case 'simpson' node = left; integration = 0; while (node + step <= right) pieceInt = step*(func(node) + 4*func(node + step/2) + func(node + step))/6; % 使用辛普森公式 integration = integration + pieceInt; node = node + step; end if (node < right) pieceInt = (right - node)*(func(node) + 4*func((node + right)/2) + func(right))/6; integration = integration + pieceInt; end end
2. 自適應分段積分方法
通過函數內調用自身的方法使得積分函數顯得簡潔明快。因為需要調用自身計算原積分的一段,必須傳入參數length標識原積分上下限總長,通過left, right和length三個參數才能夠得到某一段的要求精度。
function [ integration ] = AdaptInt( func, left, right, prec, length ) % 自適應分段積分函數AdaptInt; % 輸入五個參數:被積函數(句柄)func,積分上下限right,left,要求精度prec,積分總長length; % 輸出一個參數:積分值integration; trapeInt = (right - left)*(func(left) + func(right))/2; midInt = (right - left)*func((left + right)/2); err = (trapeInt - midInt)/3; % 由中點公式和梯形公式差估算誤差 if (abs(err) < prec && (right - left) < length/5) % 如果誤差符合要求,則使用辛普森公式計算較精確結果 integration = (right - left)*(func(left) + 4*func((left + right)/2) + func(right))/6; else % 否則,二分該段,分別進行自適應分段積分 integration = AdaptInt(func, left, (left + right)/2, prec/2, length) + AdaptInt(func, (left + right)/2, right, prec/2, length); end end