此段代碼是牛頓- 柯特斯數值積分法,代碼如下:
1.代碼
%%牛頓-柯特斯公式(此方法對於8階以下是有效的,8階以上誤差將非常大)
%%interva為求積區間,Y隨attribute變化(0或1)而對應不同選項(已知X對應的數值 或 表達式),n為步數
function NCF = Newton_Cotes_Formula(interval,Y,attribute,n)
a = interval(1);b = interval(2);
h = (b-a)/n;
for i = 1:n+1
X(i) = a+h*(i-1);
end
if attribute == 0
[m1,n1] = size(Y);
MAX = max([m1,n1]);
if MAX < n+1
p = ceil((n+1)/MAX);
Y_charge(:,1) = reshape(Y(1:MAX-1),MAX-1,1);
lambda = input('輸入插值因子(介於0,1之間):');
for i = 1:MAX-1
for k = 2:p
Y_charge(i,k) = Y(i)*(k-1)*(lambda/p)+Y(i+1)*(1-(k-1)*(lambda/p));
end
end
Y_charge0 = reshape(Y_charge',1,(n1-1)*p);
r = rand(1);
Y_charge0(1,(n1-1)*p+1) = lambda*r*Y_charge0((n1-1)*p)+(1-r*lambda)*Y(MAX);
Y = [Y_charge0,Y(MAX)];
Y = Y(1:n+1);
elseif MAX >n+1
for i = 1:n+1
X_charge(i) = floor(i*MAX/(n+1));
Y_charge(i) = Y(X_charge(i));
end
Y = Y_charge;
end
sum = 0;
for k = 1:n+1
sum = sum+Cotes_coefficient(k-1,n)*Y(k);
end
NCF = vpa((b-a)*sum,6);
elseif attribute == 1
a = interval(1);b = interval(2);
h = (b-a)/n;
for i = 1:n+1
X(i) = a+h*(i-1);
end
F = subs(Y,X);
sum = 0;
for k = 1:n+1
sum = sum+Cotes_coefficient(k-1,n)*F(k);
end
NCF = vpa((b-a)*sum,6);
end
%%柯特斯系數
function CC = Cotes_coefficient(k,n)
t = sym('t');
mult = 1;
for j = 0:1:n
if j ~=k
mult = mult*(t-j);
end
end
C = int(mult,0,n);
CC = (-1)^(n-k)/(n*factorial(k)*factorial(n-k))*C;
end
function F = factorial(n)
if n == 0
F = 1;
else
F = factorial(n-1)*n;
end
end
end
2.例子
syms x; Y = exp(x)*sin(x)+log(x+1); interval=[0 pi]; attribute = 1; n = 6; Newton_Cotes_Formula(interval,Y,attribute,n) vpa(int(Y,x,interval),6)
3.結果
ans = 14.8156 ans = 14.8143
第一項結果為牛頓-柯特斯數值積分計算結果,第二項為真實值
