在下面的這段代碼中,包含了高斯-勒讓德、高斯-切比雪夫、以及拉蓋爾和埃爾米特型求積公式,它們分別對應了不同的被積積分型
1.代碼
%%高斯型求積公式 %%Y是函數表達式,interval是求積區間,n是求積階數 %%對於求一般形式的非反常積分,可用勒讓德型, %%對於求形如f(x)/sqrt(1-x^2)的非反常積分,可用第一類切比雪夫型, %對於形如f(x)*sqrt(1-x^2)的非反常積分,可用第二類切比雪夫型,切比雪夫型積分應在[-1 1]上 %對於反常積分f(x)*exp(-x)或者f(x)*exp(-x^2),且區間為[0,+inf]或[-inf,+inf],可用拉蓋爾或者埃爾米特型(注意Y是f(x)) function GQF = Gauss_Quadrature_formula(Y,interval,n,type) x = sym('x'); global sum;
%%勒讓德型 if strcmp(type,'Legendre') == 1 a = interval(1);b = interval(2); s = (b-a)*x/2+(a+b)/2; F = subs(Y,x,s); X0 = solve([Orthogonal_polynomial(type,n+1)],[0])'; for k = 1:n X(k,:) = X0.^(k-1); B(k) = int(x^(k-1),-1,1); end A = X\(B'); F_value = subs(F,X0); sum = 0; for k = 1:n sum = sum+A(k)*F_value(k); end sum = (b-a)*sum/2; %%拉蓋爾型 elseif strcmp(type,'Laguerre') == 1 X0 = solve([Orthogonal_polynomial(type,n+1)],[0])'; for i = 1:n X(i,:) = X0.^(i-1); b(i) = factorial(i-1); end A = X\b'; F_value = subs(Y,X0); sum = 0; for i = 1:n sum = sum+A(i)*F_value(i); end %%埃爾米特型 elseif strcmp(type,'Hermite') == 1 X0 = solve([Orthogonal_polynomial(type,n+1)],[0])'; for k = 1:n X(k,:) = X0.^(k-1); if (ceil(k/2) == k/2) == 1 B(k) =0; else B(k) = gamma(k/2); end end A = X\B'; F_value = subs(Y,X0); sum = 0; for k = 1:n sum = sum+A(k)*F_value(k); end %%切比雪夫型 elseif strcmp(type(1:9),'Chebyshev') == 1 class = eval(type(10)); if class == 1 X0 = solve([Orthogonal_polynomial(type,n+1)],[0])'; for k = 1:n X(k,:) = X0.^(k-1); if (ceil(k/2) == k/2) == 1 B(k) =0; else h = k-1; B(k) = pi*Double_factorial(h+1)/(Double_factorial(h)*(h+1)); end end A = X\B'; F_value = subs(Y,X0); sum = 0; for k = 1:n sum = sum+A(k)*F_value(k); end elseif class == 2 X0 = solve([Orthogonal_polynomial(type,n+1)],[0])'; for k = 1:n X(k,:) = X0.^(k-1); if (ceil(k/2) == k/2) == 1 B(k) =0; else h = k-1; B(k) = pi*Double_factorial(h+1)/(Double_factorial(h+2)*(h+1)); end end A = X\B'; F_value = subs(Y,X0); sum = 0; for k = 1:n sum = sum+A(k)*F_value(k); end end end GQF = vpa(sum,max([2,2^min([n,3])])); %%組合數中規定n>=m function NC = Number_of_combinations(m,n) NC = factorial(n)/(factorial(m)*factorial(n-m)); function F = factorial(n) if n == 0 F = 1; else F = factorial(n-1)*n; end end end %%雙階乘 function DF = Double_factorial(n) if n == 0 DF = 1; elseif n == 1 DF = 1; elseif n == -1 DF = -1; elseif n > 1 DF = Double_factorial(n-2)*n; elseif n < -1 DF = Double_factorial(n+2)*n; end end %%階乘函數 function F = factorial(n) if n == 0 F = 1; else F = factorial(n-1)*n; end end end
%%正交多項式 %此函數包括勒讓德正交多項式(定義區間[-1,1]),切比雪夫正交多項式(兩類, %在這里,規定第一類切比雪夫多項式是以1/sqrt(1-x^2)作為權函數,第二類切比雪夫多項式以sqrt(1-x^2)作為權函數得到的)(定義區間[-1,1]) %拉蓋爾正交多項式(定義區間[0 +inf]),埃爾米特正交多項式(定義區間[-inf +inf]),輸入項數N應從1開始 %%n是多項式的項數,n>=0,type是類型,分為Legendre、Chebyshev1、Chebyshev2、Laguerre、Hermite以及冪函數{1,x,x^2,x^3,…}對應其正交多項式 function OP = Orthogonal_polynomial(type,N) sym type; if strcmp(type,'Legendre') == 1 L = Legendre(N); OP = simplify(L(N)); elseif strcmp(type,'Hermite') == 1 H = Hermite(N); OP = simplify(H(N)); elseif strcmp(type,'Laguerre') == 1 La = Laguerre(N); OP = simplify(La(N)); elseif strcmp(type,'冪函數') == 1 Po = Power_fun(N) OP = simplify(Po(N)); elseif strcmp(type(1:9),'Chebyshev') == 1 class = eval(type(10)); Che = Chebyshve(N,class); OP = simplify(Che(N)); end %%冪函數正交 function Po = Power_fun(N) x = sym('x'); for i = 1:N Power(i) = x^(i-1); end Po = Power; end %%勒讓德多項式 function L = Legendre(N) x = sym('x'); for i = 1:N Leg(i) = diff((x^2-1)^(i-1),i-1)/(factorial(i-1)*2^(i-1)); end L = Leg; end %%切比雪夫多項式 function C = Chebyshve(n,class) x = sym('x'); if class == 1 T = string([1 x]); T = sym(T); if n <=2 C = T(1:n); else for i = 2:n T(i+1) = 2*x*T(i)-T(i-1); end C = T(1:n); end elseif class ==2 U = string([1]); U = sym(U); U = [U 2*x]; if n <=2 C = U(1:n); else for i = 2:n U(i+1) = 2*x*U(i)-U(i-1); end C = U(1:n); end end end %%埃爾米特多項式 function H = Hermite(N) x = sym('x'); for i = 1:N He(i) = (-1)^N*exp(x^2)*diff(exp(-x^2),(i-1)); end H = simplify(He); end %%拉蓋爾多項式 function La = Laguerre(N) x = sym('x'); for i = 1:N Lag(i) = exp(x)*diff(x^(i-1)*exp(-x),(i-1)); end La = simplify(Lag); end %%階乘函數 function F = factorial(n) if n == 0 F = 1; else F = factorial(n-1)*n; end end end
2.例子
(1)高斯-勒讓德求積公式
syms x; n = 5; disp('高斯-勒讓德求積公式'); Y1 = exp(x)*sin(x)+log(x+1); interval1=[0 pi]; type1 = 'Legendre'; disp('求積公式值:'); Gauss_Quadrature_formula(Y1,interval1,n,type1) disp('真實值'); vpa(int(Y1,x,interval1),9)
高斯-勒讓德求積公式 求積公式值: ans = 14.814301 真實值 ans = 14.8142899
(2)I型切比雪夫
syms x; n = 5; disp('高斯-切比雪夫I型'); Y2 = cos(x^4)*exp(-abs(x)); interval2 = [-1 1]; type2 = 'Chebyshev1'; disp('I型切比雪夫'); Gauss_Quadrature_formula(Y2,interval2,n,type2) disp('真實值'); vpa(int(Y2/sqrt(1-x^2),x,interval2),9)
高斯-切比雪夫I型 I型切比雪夫 ans = 1.6533496 真實值 ans = 1.58844833
(3)II型切比雪夫
syms x; n = 5; disp('高斯-切比雪夫II型'); Y3 = cos(x^3); interval3 = [-1 1]; type3 = 'Chebyshev2'; disp('II型切比雪夫'); Gauss_Quadrature_formula(Y3,interval3,n,type3) disp('真實值'); vpa(int(Y3*sqrt(1-x^2),x,interval3),9)
高斯-切比雪夫II型 II型切比雪夫 ans = 1.5113594 真實值 ans = 1.51150634
(4)拉蓋爾型
syms x; n = 5; Y4 = x*sin(x+cos(x)); interval4 = [0 inf]; type4 = 'Laguerre'; disp('拉蓋爾型'); Gauss_Quadrature_formula(Y4,interval4,n,type4) disp('真實值'); vpa(int(Y4*exp(-x),x,interval4),9)
拉蓋爾型 ans = 0.83601799 真實值 ans = 0.823632836
(5)埃爾米特型
syms x; n = 5; Y5 = cos(x+sin(x)-1); interval5 = [-inf inf]; type5 = 'Hermite'; disp('埃爾米特型'); Gauss_Quadrature_formula(Y5,interval5,n,type5) disp('真實值'); vpa(int(Y5*exp(-x^2),x,interval5),9)
埃爾米特型 ans = 0.40264915 真實值 ans = 0.395314636