Cholesky分解 平方根法


一種矩陣運算方法,又叫Cholesky分解。所謂平方根法,就是利用對稱正定矩陣的三角分解得到的求解對稱正定方程組的一種有效方法。它是把一個對稱正定的矩陣表示成一個下三角矩陣L和其轉置的乘積的分解。它要求矩陣的所有特征值必須大於零,故分解的下三角矩陣的對角元也是大於零的。

 

 

https://en.wikipedia.org/wiki/Positive-definite_matrix

 

In linear algebra, a symmetric {\displaystyle n}n × {\displaystyle n}n real matrix {\displaystyle M}M is said to be positive definite if the scalar {\displaystyle z^{\mathrm {T} }Mz}{\displaystyle z^{\mathrm {T} }Mz} is strictly positive for every non-zero column vector {\displaystyle z}z of {\displaystyle n}n real numbers. Here {\displaystyle z^{\mathrm {T} }}{\displaystyle z^{\mathrm {T} }} denotes the transpose of {\displaystyle z}z.[1]

 

正定矩陣

positive definite matrix

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM