在leetcode上刷題的時候,偶然看到一位仁兄總結的關於尋找數組的子集(78,90)、全排列(46,47)、在數組中找出等於固定值的元素的集合(39,40)、找出字符串回文子串的集合(131),感覺很驚喜,所以搬運到這里分享給大家,下邊是原文鏈接,里面也有很多討論。https://discuss.leetcode.com/topic/46161/a-general-approach-to-backtracking-questions-in-java-subsets-permutations-combination-sum-palindrome-partitioning/2
里面比較難想的部分(對於我這種只撿easy模式的題目做的算法小白)是循環里面的遞歸,每次退棧的時候,會從cur中remove一個元素出來,然后i要加1,繼續循環!!,而且一定要弄清楚退棧后i的值是多少。建議大家拿比較簡單的{1,2,3}來跟着程序走一遍,能充分的說明問題,如果實在不能理解一層層遞歸中的各個變量的值的變化,建議在eclipse中,自己打斷點,一步步走,觀測各個值的變化。
一通百通,只要搞懂第一個題目,其他的一看就會了。
78 Subset
Given a set of distinct integers, nums, return all possible subsets.
Note: The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,3]
, a solution is:
[ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
public List<List<Integer>> subsets(int[] nums) { List<List<Integer>> list = new ArrayList<>(); Arrays.sort(nums); backtrack(list, new ArrayList<>(), nums, 0); return list; } private void backtrack(List<List<Integer>> list , List<Integer> tempList, int [] nums, int start){ list.add(new ArrayList<>(tempList)); for(int i = start; i < nums.length; i++){ tempList.add(nums[i]); backtrack(list, tempList, nums, i + 1); tempList.remove(tempList.size() - 1); } }
90 Subsets II (contains duplicates)
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note: The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,2]
, a solution is:
[ [2], [1], [1,2,2], [2,2], [1,2], [] ]
public List<List<Integer>> subsetsWithDup(int[] nums) { List<List<Integer>> list = new ArrayList<>(); Arrays.sort(nums); backtrack(list, new ArrayList<>(), nums, 0); return list; } private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int start){ list.add(new ArrayList<>(tempList)); for(int i = start; i < nums.length; i++){ if(i > start && nums[i] == nums[i-1]) continue; // skip duplicates tempList.add(nums[i]); backtrack(list, tempList, nums, i + 1); tempList.remove(tempList.size() - 1); } }
46 Permutations
Given a collection of distinct numbers, return all possible permutations.
For example,[1,2,3]
have the following permutations:
[ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]
public List<List<Integer>> permute(int[] nums) { List<List<Integer>> list = new ArrayList<>(); // Arrays.sort(nums); // not necessary backtrack(list, new ArrayList<>(), nums); return list; } private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums){ if(tempList.size() == nums.length){ list.add(new ArrayList<>(tempList)); } else{ for(int i = 0; i < nums.length; i++){ if(tempList.contains(nums[i])) continue; // element already exists, skip tempList.add(nums[i]); backtrack(list, tempList, nums); tempList.remove(tempList.size() - 1); } } }
47 Permutations II (contains duplicates)
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
For example,[1,1,2]
have the following unique permutations:
[ [1,1,2], [1,2,1], [2,1,1] ]
public List<List<Integer>> permuteUnique(int[] nums) { List<List<Integer>> list = new ArrayList<>(); Arrays.sort(nums); backtrack(list, new ArrayList<>(), nums, new boolean[nums.length]); return list; } private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, boolean [] used){ if(tempList.size() == nums.length){ list.add(new ArrayList<>(tempList)); } else{ for(int i = 0; i < nums.length; i++){ if(used[i] || i > 0 && nums[i] == nums[i-1] && !used[i - 1]) continue; used[i] = true; tempList.add(nums[i]); backtrack(list, tempList, nums, used); used[i] = false; tempList.remove(tempList.size() - 1); } } }
39 Combination Sum
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7]
and target 7
,
A solution set is:
[ [7], [2, 2, 3] ]
public List<List<Integer>> combinationSum(int[] nums, int target) { List<List<Integer>> list = new ArrayList<>(); Arrays.sort(nums); backtrack(list, new ArrayList<>(), nums, target, 0); return list; } private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){ if(remain < 0) return; else if(remain == 0) list.add(new ArrayList<>(tempList)); else{ for(int i = start; i < nums.length; i++){ tempList.add(nums[i]); backtrack(list, tempList, nums, remain - nums[i], i); // not i + 1 because we can reuse same elements tempList.remove(tempList.size() - 1); } } }
40 Combination Sum II (can't reuse same element)
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [10, 1, 2, 7, 6, 1, 5]
and target 8
,
A solution set is:
[ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ]
public List<List<Integer>> combinationSum2(int[] nums, int target) { List<List<Integer>> list = new ArrayList<>(); Arrays.sort(nums); backtrack(list, new ArrayList<>(), nums, target, 0); return list; } private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){ if(remain < 0) return; else if(remain == 0) list.add(new ArrayList<>(tempList)); else{ for(int i = start; i < nums.length; i++){ if(i > start && nums[i] == nums[i-1]) continue; // skip duplicates tempList.add(nums[i]); backtrack(list, tempList, nums, remain - nums[i], i + 1); tempList.remove(tempList.size() - 1); } } }
131 Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s = "aab"
,
Return
[ ["aa","b"], ["a","a","b"] ]
public List<List<String>> partition(String s) { List<List<String>> list = new ArrayList<>(); backtrack(list, new ArrayList<>(), s, 0); return list; } public void backtrack(List<List<String>> list, List<String> tempList, String s, int start){ if(start == s.length()) list.add(new ArrayList<>(tempList)); else{ for(int i = start; i < s.length(); i++){ if(isPalindrome(s, start, i)){ tempList.add(s.substring(start, i + 1)); backtrack(list, tempList, s, i + 1); tempList.remove(tempList.size() - 1); } } } } public boolean isPalindrome(String s, int low, int high){ while(low < high) if(s.charAt(low++) != s.charAt(high--)) return false; return true; }