Int64以內Rabin-Miller強偽素數測試和Pollard 因數分解的算法實現
選取隨機數\(a\) 隨機數\(b\),檢查\(gcd(a - b, n)\)是否大於1,若大於1則\(a - b\)是\(n\)的一個因數
實現1:floyd判環
利用多項式\(f(x)\)迭代出\({x_0, x_1, \dots, x_k}\)
設定\(x = y = x_0\)的初始值,選用多項式進行迭代,每次:\(x = f(x)\), \(y = f(f(y))\),即:\(x = x_k, y = x_{2k}\)當\(x == y\)時出現循環
設\(x = y = 2\),\(f(n) = n^2 + a\)
typedef long long ll;
ll mul_mod(ll a, ll b, ll m){
ll ans = 0, exp = a;
while(a >= m) a -= m;
while(b){
if(b & 1){
ans += exp;
while(ans >= m) ans -= m;
}
exp += exp;
while(exp >= m) exp -= m;
b >>= 1;
}
return ans;
}
ll pollard_rho(ll n, int a){
ll x = 2, y = 2, d = 1;
while(d == 1){
x = mul_mod(x, x, n) + a;
y = mul_mod(y, y, n) + a;
y = mul_mod(y, y, n) + a;
d = __gcd((x >= y ? x - y : y - x), n);
}
if(d == n) return pollard_rho(n, a + 1);
return d;
}
實現2: brent判環(更高效)
不同於floyd每次計算\(x_k, x_{2k}\)進行判斷,brent每次只計算\(x_k\),當k是2的方冪時,\(y = x_k\),每次計算\(d = gcd(x_k - y, n)\)
typedef long long ll;
ll mul_mod(ll a, ll b, ll m){
ll ans = 0, exp = a;
while(a >= m) a -= m;
while(b){
if(b & 1){
ans += exp;
while(ans >= m) ans -= m;
}
exp += exp;
while(exp >= m) exp -= m;
b >>= 1;
}
return ans;
}
ll pollard_rho(ll n, int a){
ll x = 2, y = 2, d = 1, k = 0, i = 1;
while(d == 1){
++k;
x = mul_mod(x, x, n) + a;
d = __gcd(x >= y ? x - y : y - x, n);
if(k == i){
y = x;
i <<= 1;
}
}
if(d == n) return pollard_rho(n, a + 1);
return d;
}