1,T檢驗和F檢驗的由來
一般而言,為了確定從樣本(sample)統計結果推論至總體時所犯錯的概率,我們會利用統計學家所開發的一些統計方法,進行統計檢定。
通過把所得到的統計檢定值,與統計學家建立了一些隨機變量的概率分布(probability distribution)進行比較,我們可以知道在多少%的機會下會得到目前的結果。倘若經比較后發現,出現這結果的機率很少,亦即是說,是在機會很少、很罕有的情況下才出現;那我們便可以有信心的說,這不是巧合,是具有統計學上的意義的(用統計學的話講,就是能夠拒絕虛無假設null hypothesis,Ho)。相反,若比較后發現,出現的機率很高,並不罕見;那我們便不能很有信心的直指這不是巧合,也許是巧合,也許不是,但我們沒能確定。
F值和t值就是這些統計檢定值,與它們相對應的概率分布,就是F分布和t分布。統計顯著性(sig)就是出現目前樣本這結果的機率。
2,統計學意義(P值或sig值)
結果的統計學意義是結果真實程度(能夠代表總體)的一種估計方法。
專業上,p值為結果可信程度的一個遞減指標,p值越大,我們越不能認為樣本中變量的關聯是總體中各變量關聯的可靠指標。p值是將觀察結果認為有效即具有總體代表性的犯錯概率。如p=0.05提示樣本中變量關聯有5%的可能是由於偶然性造成的。即假設總體中任意變量間均無關聯,我們重復類似實驗,會發現約20個實驗中有一個實驗,我們所研究的變量關聯將等於或強於我們的實驗結果。(這並不是說如果變量間存在關聯,我們可得到5%或95%次數的相同結果,當總體中的變量存在關聯,重復研究和發現關聯的可能性與設計的統計學效力有關。)在許多研究領域,0.05的p值通常被認為是可接受錯誤的邊界水平。
3,T檢驗和F檢驗
至於具體要檢定的內容,須看你是在做哪一個統計程序。
舉一個例子,比如,你要檢驗兩獨立樣本均數差異是否能推論至總體,而行的t檢驗。
兩樣本(如某班男生和女生)某變量(如身高)的均數並不相同,但這差別是否能推論至總體,代表總體的情況也是存在著差異呢?
會不會總體中男女生根本沒有差別,只不過是你那么巧抽到這2樣本的數值不同?
為此,我們進行t檢定,算出一個t檢定值。
與統計學家建立的以「總體中沒差別」作基礎的隨機變量t分布進行比較,看看在多少%的機會(亦即顯著性sig值)下會得到目前的結果。
若顯著性sig值很少,比如<0.05(少於5%機率),亦即是說,「如果」總體「真的」沒有差別,那麼就只有在機會很少(5%)、很罕有的情況下,才會出現目前這樣本的情況。雖然還是有5%機會出錯(1-0.05=5%),但我們還是可以「比較有信心」的說:目前樣本中這情況(男女生出現差異的情況)不是巧合,是具統計學意義的,「總體中男女生不存差異」的虛無假設應予拒絕,簡言之,總體應該存在著差異。
每一種統計方法的檢定的內容都不相同,同樣是t-檢定,可能是上述的檢定總體中是否存在差異,也同能是檢定總體中的單一值是否等於0或者等於某一個數值。
至於F-檢定,方差分析(或譯變異數分析,Analysis of Variance),它的原理大致也是上面說的,但它是透過檢視變量的方差而進行的。它
主要用於:均數差別的顯著性檢驗、分離各有關因素並估計其對總變異的作用、分析因素間的交互作用、方差齊性(Equality of Variances)檢驗等情況。
4,T檢驗和F檢驗的關系
t檢驗過程,是對兩樣本均數(mean)差別的顯著性進行檢驗。惟t檢
驗須知道兩個總體的方差(Variances)是否相等;t檢驗值的計算會因方差是否相等而有所不同。也就是說,t檢驗須視乎方差齊性(Equality of Variances)結果。所以,SPSS在進行t-test for Equality of Means的同時,也要做Levene’s Test for Equality of Variances 。
1.在Levene’s Test for Equality of Variances一欄中 F值為2.36, Sig.為.128,表示方差齊性檢驗「沒有顯著差異」,即兩方差齊(Equal Variances),故下面t檢驗的結果表中要看第一排的數據,亦即方差齊的情況下的t檢驗的結果。
2.在t-test for Equality of Means中,第一排(Variances=Equal)的情況:t=8.892, df=84, 2-Tail Sig=.000, Mean Difference=22.99
既然Sig=.000,亦即,兩樣本均數差別有顯著性意義!
3.到底看哪個Levene’s Test for Equality of Variances一欄中sig,還是看t-test for Equality of Means中那個Sig. (2-tailed)啊?
答案是:兩個都要看。
先看Levene’s Test for Equality of Variances,如果方差齊性檢驗「沒有顯著差異」,即兩方差齊(Equal Variances),故接著的t檢驗的結果表中要看第一排的數據,亦即方差齊的情況下的t檢驗的結果。
反之,如果方差齊性檢驗「有顯著差異」,即兩方差不齊(Unequal Variances),故接著的t檢驗的結果表中要看第二排的數據,亦即方差不齊的情況下的t檢驗的結果。
4.你做的是T檢驗,為什么會有F值呢?
就是因為要評估兩個總體的方差(Variances)是否相等,要做Levene’s Test for Equality of Variances,
要檢驗方差,故所以就有F值。
T檢驗和F檢驗的關系另一種解釋:
t檢驗有
單樣本t檢驗,配對t檢驗和兩樣本t檢驗。
單樣本t檢驗:是用樣本均數代表的
未知總體均數和已知總體均數進行比較,來觀察此組樣本與總體的
差異性。
配對t檢驗:是采用配對設計方法觀察以下幾種情形,1,兩個同質受試對象分別接受
兩種不同的處理;2,同一受試對象接受
兩種不同的處理;3,同一受試對象處理
前后。
F檢驗又叫方差齊性檢驗。在兩樣本t檢驗中要用到F檢驗。
從兩研究總體中隨機抽取樣本,要對這兩個樣本進行比較的時候,首先要判斷兩總體方差是否相同,即方差齊性。若兩總體方差相等,則直接用t檢驗,若不等,可采用t’檢驗或變量變換或秩和檢驗等方法。
其中要判斷兩總體方差是否相等,就可以用F檢驗。
若是單組設計,必須給出一個標准值或總體均值,同時,提供一組定量的觀測結果,
應用t檢驗的前提條件就是該組資料必須服從正態分布;若是
配對設計,每對數據的差值必須服從
正態分布;若是
成組設計,個體之間相互
獨立,兩組資料均取自正態分布的總體,並滿足方差齊性。之所以需要這些前提條件,是因為必須在這樣的前提下所計算出的t統計量才服從t分布,而t檢驗正是以t分布作為其理論依據的檢驗方法。
簡單來說就是實用T檢驗是有條件的,其中之一就是要符合方差齊次性,這點需要F檢驗來驗證。
1、問:自由度是什么?怎樣確定?
答:(定義)構成樣本統計量的獨立的樣本觀測值的數目或自由變動的樣本
觀測值的數目。用df表示。
自由度的設定是出於這樣一個理由:在總體平均數未知時,用樣本平均數去計算離差(常用小s)會受到一個限制——要計算標准差(小s)就必須先知道樣本平均數,而樣本平均數和n都知道的情況下,數據的總和就是一個常數了。所以,“最后一個”樣本數據就不可以變了,因為它要是變,總和就變了,而這是不允許的。至於有的自由度是n-2什么的,都是同樣道理。
在計算作為估計量的統計量時,引進一個統計量就會失去一個自由度。
通俗點說,一個班上有50個人,我們知道他們語文成績平均分為80,現在只需要知道49個人的成績就能推斷出剩下那個人的成績。你可以隨便報出49個人的成績,但是最后一個人的你不能瞎說,因為平均分已經固定下來了,自由度少一個了。
簡單點就好比你有一百塊,這是固定的,已知的,假設你打算買五件東西,那么前四件你可以隨便買你想買的東西,只要還有錢的話,比如說你可以吃KFC可以買筆,可以買衣服,這些花去的錢數目不等,當你只剩2塊錢時,或許你最多只能買一瓶可樂了,當然也可以買一個肉松蛋卷,但無論怎么花,你都只有兩塊錢,而這在你花去98塊那時就已經定下來了。 (這個例子舉的真不錯!!)
2、問:X方檢驗中自由度問題
答:在正態分布檢驗中,這里的M(三個統計量)為N(總數)、平均數和標准差。
因為我們在做正態檢驗時,要使用到平均數和標准差以確定該正態分布形態,此外,要計算出各個區間的理論次數,我們還需要使用到N。
所以在正態分布檢驗中,自由度為K-3。(這一條比較特別,要記住!)
在總體分布的配合度檢驗中,自由度為K-1。
在交叉表的獨立性檢驗和同質性檢驗中,自由度為(r-1)×(c-1)。
3、問:t檢驗和方差分析有何區別
答:
t檢驗適用於兩個變量均數間的差異檢驗,多於兩個變量間的均數比較要用方差分析。
用於比較均值的t檢驗可以分成三類,第一類是針對
單組設計定量資料的;第二類是針對
配對設計定量資料的;第三類則是針對成組設計定量資料的。后兩種設計類型的區別在於事先是否將兩組研究對象按照某一個或幾個方面的特征相似配成對子。無論哪種類型的t檢驗,都必須在滿足特定的前提條件下應用才是合理的。
若是單組設計,必須給出一個標准值或總體均值,同時,提供一組定量的觀測結果,應用t檢驗的前提條件就是該組資料必須服從正態分布;
若是配對設計,每對數據的差值必須服從正態分布;若是成組設計,個體之間相互獨立,兩組資料均取自正態分布的總體,並滿足方差齊性。之所以需要這些前提條件,是因為必須在這樣的前提下所計算出的t統計量才服從t分布,而t檢驗正是以t分布作為其理論依據的檢驗方法。
值得注意的是,
方差分析與成組設計t檢驗的前提條件是相同的,即正態性和方差齊性。
t檢驗是目前醫學研究中使用頻率最高,醫學論文中最常見到的處理定量資料的假設檢驗方法。t檢驗得到如此廣泛的應用,究其原因,不外乎以下幾點:現有的醫學期刊多在統計學方面作出了要求,研究結論需要統計學支持;傳統的醫學統計教學都把t檢驗作為假設檢驗的入門方法進行介紹,使之成為廣大醫學研究人員最熟悉的方法;t檢驗方法簡單,其結果便於解釋。簡單、熟悉加上外界的要求,促成了t檢驗的流行。但是,由於某些人對該方法理解得不全面,導致在應用過程中出現不少問題,有些甚至是非常嚴重的錯誤,直接影響到結論的可靠性。將這些問題歸類,可大致概括為以下兩種情況:不考慮t檢驗的應用前提,對兩組的比較一律用t檢驗;將各種實驗設計類型一律視為多個單因素兩水平設計,多次
用t檢驗進行均值之間的兩兩比較。以上兩種情況,均不同程度地增加了得出錯誤結論的風險。而且,在實驗因素的個數大於等於2時,無法研究實驗因素之間的交互作用的大小。
問:統計學意義(P值)
答:結果的統計學意義是結果真實程度(能夠代表總體)的一種估計方法。專業上,P值為結果可信程度的一個遞減指標,P值越大,我們越不能認為樣本中變量的關聯是總體中各變量關聯的可靠指標。P值是將觀察結果認為有效即具有總體代表性的犯錯概率。如
P=0.05提示樣本中變量關聯有5%的可能是由於偶然性造成的。即假設總體中任意變量間均無關聯,我們重復類似實驗,會發現約20個實驗中有一個實驗,我們所研究的變量關聯將等於或強於我們的實驗結果。(這並不是說如果變量間存在關聯,我們可得到5%或95%次數的相同結果,當總體中的變量存在關聯,重復研究和發現關聯的可能性與設計的統計學效力有關。)在許多研究領域,0.05的P值通常被認為是可接受錯誤的邊界水平。
4、問:如何判定結果具有真實的顯著性
答:在最后結論中判斷什么樣的顯著性水平具有統計學意義,不可避免地帶有武斷性。換句話說,認為結果無效而被拒絕接受的水平的選擇具有武斷性。實踐中,最后的決定通常依賴於數據集比較和分析過程中結果是先驗性還是僅僅為均數之間的兩兩>比較,依賴於總體數據集里結論一致的支持性證據的數量,依賴於以往該研究領域的慣例。通常,許多的科學領域中產生P值的結果≤0.05被認為是統計學意義的邊界線,但是這顯著性水平還包含了相當高的犯錯可能性。結果 0.05≥P>0.01被認為是具有統計學意義,而0.01≥P≥0.001被認為具有高度統計學意義。但要注意這種分類僅僅是研究基礎上非正規的判斷常規。
5、問:所有的檢驗統計都是正態分布的嗎?
答:並不完全如此,但大多數檢驗都直接或間接與之有關,可以從正態分布中推導出來,如t檢驗、F檢驗或
卡方檢驗。這些檢驗一般都要求:所分析變量在總體中呈正態分布,即滿足所謂的正態假設。許多觀察變量的確是呈正態分布的,這也是正態分布是現實世界的基本特征的原因。當人們用在正態分布基礎上建立的檢驗分析非正態分布變量的數據時問題就產生了,(參閱非參數和方差分析的正態性檢驗)。這種條件下有兩種方法:一是用替代的非參數檢驗(即無分布性檢驗),但這種方法不方便,因為從它所提供的結論形式看,這種方法統計效率低下、不靈活。另一種方法是:當確定樣本量足夠大的情況下,通常還是可以使用基於正態分布前提下的檢驗。后一種方法是基於一個相當重要的原則產生的,該原則對正態方程基礎上的總體檢驗有極其重要的作用。即,隨着樣本量的增加,樣本分布形狀趨於正態,即使所研究的變量分布並不呈正態。
6、問:假設檢驗的內涵及步驟
答:在假設檢驗中,由於隨機性我們可能在決策上犯兩類錯誤,一類是假設正確,但我們拒絕了假設,這類錯誤是“棄真”錯誤,被稱為第一類錯誤;一類是假設不正確,但我們沒拒絕假設,這類錯誤是“取偽”錯誤,被稱為第二類錯誤。一般來說,在樣本確定的情況下,任何決策無法同時避免兩類錯誤的發生,即在避免第一類錯誤發生機率的同時,會增大第二類錯誤發生的機率;或者在避免第二類錯誤發生機率的同時,會增大第一類錯誤發生的機率。人們往往根據需要選擇對那類錯誤進行控制,以減少發生這類錯誤的機率。大多數情況下,人們會控制第一類錯誤發生的概率。 發生第一類錯誤的概率被稱作顯著性水平,一般用α表示,在進行假設檢驗時,是通過事先給定顯著性水平α的值而來控制第一類錯誤發生的概率。在這個前提下,假設檢驗按下列步驟進行:
1)、確定假設;
2)、進行抽樣,得到一定的數據;
3)、根據假設條件下,構造檢驗統計量,並根據抽樣得到的數據計算檢驗統計量在這次抽樣中的具體值;
4)、依據所構造的檢驗統計量的抽樣分布,和給定的顯著性水平,確定拒絕域及其臨界值;
5)、比較這次抽樣中檢驗統計量的值與臨界值的大小,如果檢驗統計量的值在拒絕域內,則拒絕假設;
到這一步,假設檢驗已經基本完成,但是由於檢驗是利用事先給定顯著性水平的方法來控制犯錯概率的,所以對於兩個數據比較相近的假設檢驗,我們無法知道那一個假設更容易犯錯,即我們通過這種方法只能知道根據這次抽樣而犯第一類錯誤的最大概率(即給定的顯著性水平),而無法知道具體在多大概率水平上犯錯。計算 P值有效的解決了這個問題,P值其實就是按照抽樣分布計算的一個概率值,這個值是根據檢驗統計量計算出來的。通過直接比較P值與給定的顯著性水平α的大小就可以知道是否拒絕假設,顯然這就代替了比較檢驗統計量的值與臨界值的大小的方法。而且通過這種方法,我們還可以知道在p值小於α的情況下犯第一類錯誤的實際概率是多少,p=0.03<α=0.05,那么拒絕假設,這一決策可能犯錯的概率是0.03。需要指出的是,如果P>α,那么假設不被拒絕,在這種情況下,第一類錯誤並不會發生。
7、問:
卡方檢驗的結果,值是越大越好,還是越小越好?
答:與其它檢驗一樣,所計算出的統計量越大,在分布中越接近分布的尾端,所對應的概率值越小。
如果試驗設計合理、數據正確,顯著或不顯著都是客觀反映。沒有什么好與不好。
8、問:配對樣本的T檢驗和相關樣本檢驗有何差別?
答:配對樣本有同源配對(如動物實驗中雙胞胎)、條件配對(如相同的環境)、自身配對(如醫學實驗中個體的用葯前后)等。(好像沒有解釋清楚啊,同問這個,到底什么區別呢?)
9、問:在比較兩組數據的率是否相同時,二項分布和
卡方檢驗有什么不同?
答:卡方分布主要用於多組多類的比較,是檢驗研究對象總數與某一類別組的觀察頻數和期望頻數之間是否存在顯著差異,要求每格中頻數不小於5,如果小於5則合並相鄰組。二項分布則沒有這個要求。
如果分類中只有兩類還是采用二項檢驗為好。
如果是2*2表格可以用fisher精確檢驗,在小樣本下效果更好。
10、問:如何比較兩組數據之間的差異性
答:從四個方面來回答,
1).設計類型是完全隨機設計兩組數據比較,不知道數據是否是連續性變量?
2).比較方法:如果數據是連續性數據,且兩組數據分別服從正態分布&方差齊(方差齊性檢驗),則可以采用t檢驗,如果不服從以上條件可以采用秩和檢驗。
3).想知道兩組數據是否有明顯差異?不知道這個明顯差異是什么意思?是問差別有無統計學意義(即差別的概率有多大)還是兩總體均數差值在哪個范圍波動?如果是前者則可以用第2步可以得到P值,如果是后者,則是用均數差值的置信區間來完成的。當然兩者的結果在SPSS中均可以得到。
11、問:
回歸分析和相關分析的聯系和區別
答:主要聯系有:回歸分析和相關分析是互相補充、密切聯系的,相關分析需要回歸分析來表明現象數量關系的具體形式,而回歸分析則應該建立在相關分析的基礎上。
主要區別有:
一,在回歸分析中,不僅要根據變量的地位,作用不同區分出自變量和因變量,把因變量置於被解釋的特殊地位,而且以因變量為隨機變量,同時總假定自變量是非隨機的可控變量. 在相關分析中,變量間的地位是完全平等的,不僅無自變量和因變量之分,而且相關變量全是隨機變量.
二,相關分析只限於描述變量間相互依存關系的密切程度,至於相關變量間的定量聯系關系則無法明確反映. 而回歸分析不僅可以定量揭示自變量對應變量的影響大小,還可以通過回歸方程對變量值進行預測和控制.
相關分析與回歸分析均為研究2個或多個變量間關聯性的方法,但2種數理統計方法存在本質的差別,即它們用於不同的研究目的。
相關分析的目的在於檢驗兩個隨機變量的共變趨勢(即共同變化的程度),回歸分析的目的則在於試圖用自變量來預測因變量的值。
在相關分析中,兩個變量必須同時都是隨機變量,如果其中的一個變量不是隨機變量,就不能進行相關分析,這是相關分析方法本身所決定的。
對於回歸分析,其中的因變量肯定為隨機變量(這是回歸分析方法本身所決定的),而自變量則可以是普通變量(有確定的取值)也可以是隨機變量。
對於此二者的區別,我想通過下面這個比方很容易理解:
對於兩個人關系,相關關系只能知道他們是戀人關系,至於他們誰是主導者,誰說話算數,誰是跟隨者,一個打個噴嚏,另一個會有什么反應,相關就不能勝任,而回歸分析則能很好的解決這個問題
回歸未必有因果關系。
回歸的主要有二:一是解釋,一是預測。在於利用已知的自變項預測未知的依變數。相關系數,主要在了解兩個變數的共變情形。如果有因果關系,通常會進行路徑分析(path analysis)或是線性結構關系模式。
我覺得應該這樣看,我們做回歸分析是在一定的理論和直覺下,通過自變量和因變量的數量關系探索是否有因果關系。樓上這位仁兄說“回歸未必有因果關系……如果有因果關系,通常進行路徑分析或線性結構關系模式”有點值得商榷吧,事實上,回歸分析可以看成是線性結構關系模式的一個特例啊。
我覺得說回歸是探索因果關系的並沒錯,因為實際上最后我們並不是完全依據統計的結果來判斷因果性,只有在統計結果和理論及現實比較吻合的基礎上我們才肯定這種因果關系。任何統計方法只是一種工具,但是不能完全依賴於這種工具。即使是SEM,我們也不能說完全認定其准確性,因為即使方法是好的,但是變量的復雜關系呈現的方式也是多種多樣的,可能統計只能告訴你一個方向上的最優解,可未必是最符合實際的,更何況抽樣數據的質量好壞也會使得結果不符合事實,從而導致人們懷疑統計方法的准確性。
統計只說明統計關聯。 不證明因素關系。
回歸有因果關系,相關未必。
回歸分析是處理兩個及兩個以上變量間線性依存關系的統計方法。此類問題很普遍,如人頭發中某種金屬元素的含量與血液中該元素的含量有關系,人的體表面積與身高、體重有關系;等等。
回歸分析就是用於說明這種依存變化的數學關系。
任何事物的存在都不是孤立的,而是相互聯系、相互制約的。身高與體重、體溫與脈搏、年齡與血壓等都存在一定的聯系。
說明客觀事物相互間關系的密切程度並用適當的統計指標表示出來,這個過程就是相關分析.
轉自於:http://www.cdadata.com/9116