二分查找和斐波那契查找


二分查找

說明:查找的數組或列表必須是有序的,若無序,先進行排序

復雜度:時間復雜度 O(log2n),空間復雜度O(n)

C++源碼(遞歸和非遞歸兩個版本)

#include <iostream>
using namespace std;

int a[] = { 1, 2, 3, 4, 5, 6, 8 };

int BinarySearch1(int l, int r, int value)
{
	int mid = (l + r) / 2;
	if (l == r && a[l] != value)
		return -1;
	if (a[mid] == value)
		return mid;
	if (a[mid] > value)
		return BinarySearch1(l, mid - 1, value);
	else
		return BinarySearch1(mid + 1, r, value);
	
}


int BinarySearch2(int value){
	int l = 0;
	int r = sizeof(a) / sizeof(a[0]) - 1;
	while (l <= r){
		int mid = (l + r) / 2;
		if (a[mid] == value)
			return (l + r) / 2;
		if (a[mid] > value)
			r = mid - 1;
		else
			l = mid + 1;
	}
	return -1;
}


int main(void)
{
	
	cout << "Binary Search (recursive) result: " << BinarySearch1(0, sizeof(a) / sizeof(a[0]) - 1, 5) << endl;;
	cout << "Binary Search (no recursive) result: " << BinarySearch2(4) << endl;
}

 

斐波那契查找

 在介紹斐波那契查找算法之前,我們先介紹一下很它緊密相連並且大家都熟知的一個概念——黃金分割。

  黃金比例又稱黃金分割,是指事物各部分間一定的數學比例關系,即將整體一分為二,較大部分與較小部分之比等於整體與較大部分之比,其比值約為1:0.618或1.618:1。

  0.618被公認為最具有審美意義的比例數字,這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建築等藝術領域,而且在管理、工程設計等方面也有着不可忽視的作用。因此被稱為黃金分割。

  大家記不記得斐波那契數列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….(從第三個數開始,后邊每一個數都是前兩個數的和)。然后我們會發現,隨着斐波那契數列的遞增,前后兩個數的比值會越來越接近0.618,利用這個特性,我們就可以將黃金比例運用到查找技術中。

   基本思想:也是二分查找的一種提升算法,通過運用黃金比例的概念在數列中選擇查找點進行查找,提高查找效率。同樣地,斐波那契查找也屬於一種有序查找算法。
  相對於折半查找,一般將待比較的key值與第mid=(low+high)/2位置的元素比較,比較結果分三種情況:

  1)相等,mid位置的元素即為所求

  2)>,low=mid+1;

     3)<,high=mid-1。

  斐波那契查找與折半查找很相似,他是根據斐波那契序列的特點對有序表進行分割的。他要求開始表中記錄的個數為某個斐波那契數小1,及n=F(k)-1;

 開始將k值與第F(k-1)位置的記錄進行比較(及mid=low+F(k-1)-1),比較結果也分為三種

  1)相等,mid位置的元素即為所求

  2)>,low=mid+1,k-=2;

  說明:low=mid+1說明待查找的元素在[mid+1,high]范圍內,k-=2 說明范圍[mid+1,high]內的元素個數為n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1個,所以可以遞歸的應用斐波那契查找。

  3)<,high=mid-1,k-=1。

  說明:low=mid+1說明待查找的元素在[low,mid-1]范圍內,k-=1 說明范圍[low,mid-1]內的元素個數為F(k-1)-1個,所以可以遞歸 的應用斐波那契查找。

   復雜度分析:最壞情況下,時間復雜度為O(log2n),且其期望復雜度也為O(log2n )。
#include <iostream>
#include <vector>
using namespace std;
const int MAX_SIZE = 20;

int a[] = { 1, 5, 15, 22, 25, 31, 39, 42, 47, 49, 59, 68, 88 };

void Fibonacci(int F[])
{
	F[0] = 0;
	F[1] = 1;
	for (size_t i = 2; i < MAX_SIZE; i++)
		F[i] = F[i - 1] + F[i - 2];
	
}

int FibonacciSearch(int value)
{
	int F[MAX_SIZE];
	Fibonacci(F);
	int n = sizeof(a) / sizeof(int);

	int k = 0;
	while (n > F[k] - 1)
		k++;
	vector<int> temp;
	temp.assign(a, a + n);
	for (size_t i = n; i < F[k] - 1; i++)
		temp.push_back(a[n - 1]);

	int l = 0, r = n - 1;
	while (l <= r)
	{
		int mid = l + F[k - 1] - 1;
		if (temp[mid] < value){
			l = mid + 1;
			k = k - 2;
		}
		else if (temp[mid] > value){
			r = mid - 1;
			k = k - 1;
		}
		else{
			if (mid < n)
				return mid;
			else
				return n - 1;
		}
	}
	return -1;
}

int main()
{

	int index = FibonacciSearch(88);
	cout << index << endl;

}

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM