1.Beam Model
Beam Model我將它叫做測量光束模型。個人理解,它是一種完全的物理模型,只針對激光發出的測量光束建模。將一次測量誤差分解為四個誤差。
$ph_{hit}$,測量本身產生的誤差,符合高斯分布。
$ph_{xx}$,由於存在運動物體產生的誤差。
...
2.Likehood field
似然場模型,和測量光束模型相比,考慮了地圖的因素。不再是對激光的掃描線物理建模,而是考慮測量到的物體的因素。
似然比模型本身是一個傳感器觀測模型,之所以可以實現掃描匹配,是通過划分柵格,步進的方式求的最大的Score,將此作為最佳的位姿。
for k=1:size(zt,1)
if zt(k,2)>0
d = -grid_dim/2;
else
d = grid_dim/2;
end
phi = pi_to_pi(zt(k,2) + x(3));
if zt(k,1) ~= Z_max
ppx = [x(1),x(1) + zt(k,1)*cos(phi) + d];
ppy = [x(2),x(2) + zt(k,1)*sin(phi) + d];
end_points = [end_points;ppx(2),ppy(2)];
wm = likelihood_field_range_finder_model(X(j,:)',xsensor,...
zt(k,:)',nearest_wall, grid_dim, std_hit,Z_weights,Z_max);
W(j) = W(j) * wm;
else
dist = Z_max + std_hit*randn(1);
ppx = [x(1),x(1) + dist*cos(phi) + d];
ppy = [x(2),x(2) + dist*sin(phi) + d];
missed_points = [missed_points;ppx(2),ppy(2)];
end
set(handle_sensor_ray(k),'XData', ppx, 'YData', ppy)
end
function q = likelihood_field_range_finder_model(X,x_sensor,zt,N,dim,std_hit,Zw,z_max)
% retorna probabilidad de medida range finder :)
% X col, zt col, xsen col
[n,m] = size(N);
% Robot global position and orientation
theta = X(3);
% Beam global angle
theta_sen = zt(2);
phi = pi_to_pi(theta + theta_sen);
%Tranf matrix in case sensor has relative position respecto to robot's CG
rotS = [cos(theta),-sin(theta);sin(theta),cos(theta)];
% Prob. distros parameters
sigmaR = std_hit;
zhit = Zw(1);
zrand = Zw(2);
zmax = Zw(3);
% Actual algo
q = 1;
if zt(1) ~= z_max
% get global pos of end point of measument
xz = X(1:2) + rotS*x_sensor + zt(1)*[cos(phi);
sin(phi)];
xi = floor(xz(1)/dim) + 1;
yi = floor(xz(2)/dim) + 1;
% if end point doesn't lay inside map: unknown
if xi<1 || xi>n || yi<1 || yi>m
q = 1.0/z_max; % all measurements equally likely, uniform in range [0-zmax]
return
end
dist2 = N(xi,yi);
gd = gauss_1D(0,sigmaR,dist2);
q = zhit*gd + zrand/zmax;
end
end
3.Correlation based sensor models相關分析模型
XX提出了一種用相關函數表達馬爾科夫過程的掃描匹配方法。
互相關方法Cross-Correlation,另外相關分析在進行匹配時也可以應用,比如對角度直方圖進行互相關分析,計算變換矩陣。
參考文獻:A Map Based On Laser scans without geometric interpretation
circular Cross-Correlation的Matlab實現
1 % Computes the circular cross-correlation between two sequences 2 % 3 % a,b the two sequences 4 % normalize if true, normalize in [0,1] 5 % 6 function c = circularCrossCorrelation(a,b,normalize) 7 8 for k=1:length(a) 9 c(k)=a*b'; 10 b=[b(end),b(1:end-1)]; % circular shift 11 end 12 13 if normalize 14 minimum = min(c); 15 maximum = max(c); 16 c = (c - minimum) / (maximum-minimum); 17 end
4.MCL
蒙特卡洛方法
5.AngleHistogram
角度直方圖
6.ICP/PLICP/MBICP/IDL
屬於ICP系列,經典ICP方法,點到線距離ICP,
7.NDT
正態分布變換
8.pIC
結合概率的方法
9.線特征
目前應用線段進行匹配的試驗始終不理想:因為線對應容易產生錯誤,而且累積誤差似乎也很明顯!
