圖像的頻率是表征圖像中灰度變化劇烈程度的指標,是灰度在平面空間上的梯度。如:大面積的沙漠在圖像中是一片灰度變化緩慢的區域,對應的頻率值很低;而對 於地表屬性變換劇烈的邊緣區域在圖像中是一片灰度變化劇烈的區域,對應的頻率值較高。傅立葉變換在實際中有非常明顯的物理意義,設f是一個能量有限的模擬信號,則其傅立葉變換就表示f的譜。從純粹的數學意義上看,傅立葉變換是將一個函數轉換為一系列周期函數來處理的。從物理效果看,傅立葉變換是將圖像從空間域轉換到頻率域,其逆變換是將圖像從頻率域轉換到空間域。換句話說,傅立葉變換的物理意義是將圖像的灰度分布函數變換為圖像的頻率分布函數,傅立葉逆變換是將圖像的頻率分布函數變換為灰度分布函數。
這樣通過觀察傅立葉變換后的頻譜圖,也叫功率圖,我們首先就可以看出,圖像的能量分布,如果頻譜圖中暗的點數更多,那么實際圖像是比較柔和的(因為各點與 鄰域差異都不大,梯度相對較小),反之,如果頻譜圖中亮的點數多,那么實際圖像一定是尖銳的,邊界分明且邊界兩邊像素差異較大的。對 頻譜移頻到原點以后,可以看出圖像的頻率分布是以原點為圓心,對稱分布的。將頻譜移頻到圓心除了可以清晰地看出圖像頻率分布以外,還有一個好處,它可以分 離出有周期性規律的干擾信號,比如正弦干擾,一副帶有正弦干擾,移頻到原點的頻譜圖上可以看出除了中心以外還存在以某一點為中心,對稱分布的亮點集合,這 個集合就是干擾噪音產生的,這時可以很直觀的通過在該位置放置帶阻濾波器消除干擾。另外我還想說明以下幾點:
1、圖像經過二維傅立葉變換后,其變換系數矩陣表明:
若變換矩陣Fn原點設在中心,其頻譜能量集中分布在變換系數短陣的中心附近(圖中陰影區)。若所用的二維傅立葉變換矩陣Fn的原點設在左上角,那么圖像信號能量將集中在系數矩陣的四個角上。這是由二維傅立葉變換本身性質決定的。同時也表明一股圖像能量集中低頻區域。
2 、變換之后的圖像在原點平移之前四角是低頻,最亮,平移之后中間部分是低頻,最亮,亮度大說明低頻的能量大(幅角比較大)。
從計算機處理精度上就不難理解,一個長度為N的信號,最多只能有N/2+1個不同頻率,再多的頻率就超過了計算機所能所處理的精度范圍)
X[]數組又分兩種,一種是表示余弦波的不同頻率幅度值:Re X[],另一種是表示正弦波的不同頻率幅度值:Im X[],Re是實數(Real)的意思,Im是虛數(Imagine)的意思,采用復數的表示方法把正余弦波組合起來進行表示,但這里我們不考慮復數的其 它作用,只記住是一種組合方法而已,目的是為了便於表達(在后面我們會知道,復數形式的傅立葉變換長度是N,而不是N/2+1)。
用Matlab實現快速傅立葉變換
FFT是離散傅立葉變換的快速算法,可以將一個信號變換到頻域。有些信號在時域上是很難看出什么特征的,但是如果變換到頻域之后,就很容易看出特征了。這 就是很多信號分析采用FFT變換的原因。另外,FFT可以將一個信號的頻譜提取出來,這在頻譜分析方面也是經常用的。
雖然很多人都知道FFT是什么,可以用來做什么,怎么去做,但是卻不知道FFT之后的結果是什意思、如何決定要使用多少點來做FFT。
現在就根據實際經驗來說說FFT結果的具體物理意義。一個模擬信號,經過ADC采樣之后,就變成了數字信號。采樣定理告訴我們,采樣頻率要大於信號頻率的兩倍,這些我就不在此啰嗦了。
采樣得到的數字信號,就可以做FFT變換了。N個采樣點,經過FFT之后,就可以得到N個點的FFT結果。為了方便進行FFT運算,通常N取2的整數次方。
假設采樣頻率為Fs,信號頻率F,采樣點數為N。那么FFT之后結果就是一個為N點的復數。每一個點就對應着一個頻率點。這個點的模值,就是該頻率值下的幅度特性。具體跟原始信號的幅度有什么關系呢?假設原始信號的峰值為A,那么FFT的結果的每個點(除了第一個點直流分量之外)的模值就是A的N/2倍。而第一個點就是直流分量,它的模值就是直流分量的N倍。 而每個點的相位呢,就是在該頻率下的信號的相位。第一個點表示直流分量(即0Hz),而最后一個點N的再下一個點(實際上這個點是不存在的,這里是假設的 第N+1個點,也可以看做是將第一個點分做兩半分,另一半移到最后)則表示采樣頻率Fs,這中間被N-1個點平均分成N等份,每個點的頻率依次增加。例如某點n所表示的頻率為:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到頻率為Fs/N,如果采樣頻率Fs為1024Hz,采樣點數為1024點,則可以分辨到1Hz。1024Hz的采樣率采樣1024點,剛好是1秒,也就是說,采樣1秒時間的信號並做FFT,則結果可以分析到1Hz,如果采樣2秒時間的信號並做FFT,則結果可以分析到0.5Hz。如果要提高頻率分辨力,則必須增加采樣點數,也即采樣時間。頻率分辨率和采樣時間是倒數關系。
假設FFT之后某點n用復數a+bi表示,那么這個復數的模就是An=根號a*a+b*b,相位就是Pn=atan2(b,a)。根據以上的結果,就可以 計算出n點(n≠1,且n<=N/2)對應的信號的表達式為:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An /N*cos(2*pi*Fn*t+Pn)。對於n=1點的信號,是直流分量,幅度即為A1/N。由於FFT結果的對稱性,通常我們只使用前半部分的結果,即小於采樣頻率一半的結果。
下面以一個實際的信號來做說明。假設我們有一個信號,它含有2V的直流分量,頻率為50Hz、相位為-30度、幅度為3V的交流信號,以及一個頻率 (f0)為75Hz、相位為90度、幅度為1.5V的交流信號。用數學表達式就是如下:S=2+3*cos(2*pi*50*t- pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)。式中cos參數為弧度,所以-30度和90度要分別換算成弧度。我們 以256Hz的采樣率對這個信號進行采樣,總共采樣256點。按照我們上面的分析,Fn=(n-1)*Fs/N,我們可以知道,每兩個點之間的間距就是 1Hz,第n個點的頻率就是n-1。我們的信號有3個頻率:0Hz、50Hz、75Hz,應該分別在第1個點、第51個點、第76個點上出現峰值,其它各 點應該接近0。實際情況如何呢?我們來看看FFT的結果的模值如圖所示。
圖1 FFT結果
從圖中我們可以看到,在第1點、第51點和第76點附近有比較大的值。我們分別將這三個點附近的數據拿上來細看:
1點: 512+0i
2點: -2.6195E-14 - 1.4162E-13i
3點: -2.8586E-14 - 1.1898E-13i
50點:-6.2076E-13 - 2.1713E-12i
51點:332.55 - 192i
52點:-1.6707E-12 - 1.5241E-12i
75點:-2.2199E-13 -1.0076E-12i
76點:3.4315E-12 + 192i
77點:-3.0263E-14 +7.5609E-13i
很明顯,1點、51點、76點的值都比較大,它附近的點值都很小,可以認為是0,即在那些頻率點上的信號幅度為0。接着,我們來計算各點的幅度值。分別計算這三個點的模值,結果如下:
1點: 512
51點:384
76點:192
按照公式,可以計算出直流分量為:512/N=512/256=2;50Hz信號的幅度為:384/(N/2)=384/(256/2)=3;75Hz信號的幅度為192/(N/2)=192/(256/2)=1.5。可見,從頻譜分析出來的幅度是正確的。
然后再來計算相位信息。直流信號沒有相位可言,不用管它。先計算50Hz信號的相位,atan2(-192, 332.55)=-0.5236,結果是弧度,換算為角度就是180*(-0.5236)/pi=-30.0001。再計算75Hz信號的相 位,atan2(192, 3.4315E-12)=1.5708弧度,換算成角度就是180*1.5708/pi=90.0002。可見,相位也是對的。根據FFT結果以及上面的 分析計算,我們就可以寫出信號的表達式了,它就是我們開始提供的信號。
總結:假設采樣頻率為Fs,采樣點數為N,做FFT之后,某一點n(n從1開始)表示的頻率為:Fn=(n-1)*Fs/N;該點的模值除以N/2就是對 應該頻率下的信號的幅度(對於直流信號是除以N);該點的相位即是對應該頻率下的信號的相位。相位的計算可用函數atan2(b,a)計算。 atan2(b,a)是求坐標為(a,b)點的角度值,范圍從-pi到pi。要精確到xHz,則需要采樣長度為1/x秒的信號,並做FFT。要提高頻率分 辨率,就需要增加采樣點數,這在一些實際的應用中是不現實的,需要在較短的時間內完成分析。解決這個問題的方法有頻率細分法,比較簡單的方法是采樣比較短 時間的信號,然后在后面補充一定數量的0,使其長度達到需要的點數,再做FFT,這在一定程度上能夠提高頻率分辨力。具體的頻率細分法可參考相關文獻.
PS:這里解釋下前面講的假設原始信號的峰值為A,那么FFT的結果的每個點(除了第一個點直流分量之外)的模值就是A的N/2倍。而第一個點就是直流分量,它的模值就是直流分量的N倍。這句話應該僅僅對sin,cos函數有效吧。如果時域上為x(n)=1,0<=n<=6,其他n均為0,16點fft顯然不滿足這個條件。
而對於cos函數,拿他舉得例子看S(n)=2+3*cos(2*pi*50*n- pi*30/180)+1.5*cos(2*pi*75*n+pi*90/180)以256Hz的采樣率對這個信號進行采樣,總共采樣256點。按照我們 上面的分析,Fn=(n-1)*Fs/N,我們可以知道,每兩個點之間的間距就是1Hz,第n個點的頻率就是n-1。我們的信號有3個頻率:0Hz、 50Hz、75Hz,應該分別在第1個點、第51個點、第76個點上出現峰值,其它各點應該接近0。實際情況如何呢?
更具DFT的公式:
因為采樣頻率為256hz,
所以x(n)=s(n/256)=2+3*cos(2*pi*50*n/256-pi*30/180)+1.5*cos(2*pi*75*n/256+pi*90/180)
將x(n)帶入,化簡得:
最后利用正交原理,當k=0時,后面兩項都等於0,X(0)=2*256=512;
當k=50,第一和第三項為0,中間不為0,X(50)=3*1/2*256*e(-j*π/6),模值|X(50)|=384;
當K=75,同理,模值|X(75)|=192;
(matlab中下標是從1開始的,所以K的取值向后延一位,即K=1,51,76)這與實驗出來的結果是一致的。