1.問題描述
實現一個函數,輸入一個無符號整數,輸出該數二進制中的1的個數。例如把9表示成二進制是1001,有2位是1,因此如果輸入9,該函數輸出2
2.分析與解法
解法1:利用十進制和二進制相互轉化的規則,依次除余操作的結果是否為1 代碼如下:
int Count1(unsigned int v) { int num = 0; while(v) { if(v % 2 == 1) { num++; } v = v/2; } return num; }
解法2:向右移位操作同樣可以達到相同的目的,唯一不同的是,移位之后如何來判斷是否有1存在。對於這個問題,舉例:10100001,在向右移位的過程中,我們會把最后一位丟棄,因此需要判斷最后一位是否為1,這個需要與00000001進行位“與”操作,看結果是否為1,如果為1,則表示當前最后八位最后一位為1,否則為0,解法代碼實現如下,時間復雜度為O(log2v)。
int Count2(unsigned int v) { unsigned int num = 0; while(v) { num += v & 0x01; v >>= 1; } return num; }
解法3:利用"與"操作,不斷清除n的二進制表示中最右邊的1,同時累加計數器,直至n為0,這種方法速度比較快,其運算次數與輸入n的大小無關,只與n中1的個數有關。如果n的二進制表示中有M個1,那么這個方法只需要循環k次即可,所以其時間復雜度O(M),代碼實現如下:
int Count3(unsigned int v) { int num = 0; while(v) { v &= (v-1); num++; } return num; }
編程之美同時給出了8bit的情況下,解法4:使用分支操作,解法5:查表法 再計算32bit無符號整數時,需要將32bit切為4部分 然后每部分分別運用解法4解法5下面僅給出代碼:
解法4:
int Count4(unsigned int v) { int num = 0; switch(v) { case 0x0: num = 0; break; case 0x1: case 0x2: case 0x4: case 0x8: case 0x10: case 0x20: case 0x40: case 0x80: num = 1; break; case 0x3: case 0x6: case 0xc: case 0x18: case 0x30: case 0x60: case 0xc0: num = 2; break; //..... } return num; }
解法5:
unsigned int table[256] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; int CountTable(unsigned int v) { return table[v & 0xff] + table[(v >> 8) & 0xff] + table[(v >> 16) & 0xff] + table[(v >> 24) & 0xff] ; }
網上還給出了 平行算法,思路:將v寫成二進制形式,然后相鄰位相加,重復這個過程,直到只剩下一位。以217(11011001)為例,有圖有真相,下面的圖足以說明一切了。217的二進制表示中有5個1。
代碼如下:
int Count6(unsigned int v) { v = (v & 0x55555555) + ((v >> 1) & 0x55555555) ; v = (v & 0x33333333) + ((v >> 2) & 0x33333333) ; v = (v & 0x0f0f0f0f) + ((v >> 4) & 0x0f0f0f0f) ; v = (v & 0x00ff00ff) + ((v >> 8) & 0x00ff00ff) ; v = (v & 0x0000ffff) + ((v >> 16) & 0x0000ffff) ; return v ; }