1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题。 ...
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题。 ...
对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。 1. 获取数据,定义问题 没有数据,当然没法研究机器学习啦。:) 这里我们用UCI大学公开的机器学习数据来跑线性回归 ...
之前在逻辑回归原理小结这篇文章中,对逻辑回归的原理做了小结。这里接着对scikit-learn中逻辑回归类库的我的使用经验做一个总结。重点讲述调参中要注意的事项。 1. 概述 在scikit-learn中,与逻辑回归有关的主要是这3个类。LogisticRegression ...
基于scikit-learn包实现机器学习之KNN(K近邻) scikit-learn(简称sklearn)是目前最受欢迎,也是功能最强大的一个用于机器学习的Python库件。它广泛地支持各种分类、聚类以及回归分析方法比如支持向量机、随机森林、DBSCAN ...
conda升级默认官网地址,速度会特别慢,现在我们指定一个当前可用的镜像,步骤如下: 1.执行命令,生成.condarc文件 conda config --add channels http ...
scikit-learn对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析,本文就对这些类库的使用做一个总结,重点讲述这些线性回归算法库的不同和各自的使用场景。 线性回归的目的是要得到输出向量\(\mathbf{Y}\)和输入特征\(\mathbf{X}\)之间 ...
学习机器学习童鞋们应该都知道决策树是一个非常好用的算法,因为它的运算速度快,准确性高,方便理解,可以处理连续或种类的字段,并且适合高维的数据而被人们喜爱,而Sklearn也是学习Python实现机 ...
在学习机器学习算法的过程中,我们经常需要数据来验证算法,调试参数。但是找到一组十分合适某种特定算法类型的数据样本却不那么容易。还好numpy, scikit-learn都提供了随机数据生成的功能,我们可以自己生成适合某一种模型的数据,用随机数据来做清洗,归一化,转换,然后选择模型与算法做 ...
基于sklearn的常用分类任务指标Python实现 一、摘要 分类任务常用指标包含混淆矩阵、每类分类精度、平均分类精度、总体分类精度、f1-score等。 Python的sklearn.metr ...
目前机器学习可以说是百花齐放阶段,不过如果要学习或者研究机器学习,进而用到生产环境,对平台,开发语言,机器学习库的选择就要费一番脑筋了。这里就我自己的机器学习经验做一个建议,仅供参考。 ...