参考资料:360百科、概率统计 琴生不等式,又名詹森(Jensen)不等式。 在机器学习中对凸函数的定义不同于以往在数学中接触的凹函数定义,我们把类似碗形的函数称之为凸函数,类似拱形的函数称之为凹函数。如下图所示: 定义 如果函数f(x)满足对定义域上任意两个x1、x2都有(f(x1 ...
刷题遇到的证明题,一下想到了琴生不等式,主要是根据f x gt 这里仅以 gt 为例 来联想步骤。 通过这个条件可以联系到: Taylor公式 f 单调增 凹函数 凹函数与切线作图形成的不等式 凹函数定义证明: 琴生不等式证明: ...
2020-07-20 18:41 3 1019 推荐指数:
参考资料:360百科、概率统计 琴生不等式,又名詹森(Jensen)不等式。 在机器学习中对凸函数的定义不同于以往在数学中接触的凹函数定义,我们把类似碗形的函数称之为凸函数,类似拱形的函数称之为凹函数。如下图所示: 定义 如果函数f(x)满足对定义域上任意两个x1、x2都有(f(x1 ...
若 $f(x)$ 是区间 $[a,b]$ 上的凹函数,则对任意的 $x_{1},x_{2},...,x_{n} \in [a,b]$,且 $\sum_{i = 1}^{n}\lambda_{i} = 1, \lambda_{i} > 0$,有不等式 $$\sum_{i = 1}^{n ...
第一次用latex排个版,累死我了 ...
1、采用积分中值定理(适用于函数单调性已知的情况下)。 用积分中值定理将积分表达式转化为代数式。 2、对被积函数采用微分中值定理进行等值替换(适用于函数单调性未确定的情况下)。 将被积函数等值替 ...
均值不等式 定义 均值不等式,同称平均值不等式,也可称为基本不等式。其内容为: \[H_n\leqslant G_n\leqslant A_n\leqslant Q_n \] 即 调和平均数 \(\leqslant\) 几何平均数 \(\leqslant\) 算术平均 ...
定理4.4 (切比雪夫不等式) 设随机变量 \(X\) 的期望和方差均存在,则对任意 \(\varepsilon > 0\),有 \[P(|X - WX| \geq \varepsilon) \leq \displaystyle\frac{DX}{\varepsilon ...
定义 对于任意实数 \(a_i,b_i(i=1,2,\cdots,n)\),有 \[\sum\limits_{i=1}^n a_i^2 \sum\limits_{j=1}^n b_j^2 \ ...
二位柯西不等式\((ac+bd)^2≤(a^2+b^2)(c^2+d^2)\) 如图,两张图片中颜色相同的三角形全等,且均为直角三角形,不妨设蓝色三角形的直角边边长分别为a、b,黄色三角形的直角边边长分别为c、d。显然,两种图片中中心白色的部分分别为平行四边形和矩形,且两图形对应边长分别 ...