参考链接: https://blog.csdn.net/sunny_xsc1994/article/details/82969867 https://www.cnblogs.com/lovephysics/p/7220111.html 这里只做理解,不放官方文档。 1.nn.Conv1d ...
用法: Shape: 计算公式: 参数: bigotimes: 表示二维的相关系数计算 stride: 控制相关系数的计算步长dilation: 用于控制内核点之间的距离,详细描述在这里 groups: 控制输入和输出之间的连接:group ,输出是所有的输入的卷积 group ,此时相当于有并排的两个卷积层,每个卷积层计算输入通道的一半,并且产生的输出是输出通道的一半,随后将这两个输出连接起来。 ...
2020-03-19 16:15 2 685 推荐指数:
参考链接: https://blog.csdn.net/sunny_xsc1994/article/details/82969867 https://www.cnblogs.com/lovephysics/p/7220111.html 这里只做理解,不放官方文档。 1.nn.Conv1d ...
一、conv1d 在NLP领域,甚至图像处理的时候,我们可能会用到一维卷积(conv1d)。所谓的一维卷积可以看作是二维卷积(conv2d)的简化,二维卷积是将一个特征图在width和height两个方向上进行滑窗操作,对应位置进行相乘并求和;而一维卷积则是只在width或者说height方向 ...
转自:https://blog.csdn.net/sunny_xsc1994/article/details/82969867,感谢分享 pytorch之nn.Conv1d详解 ...
先看一下CLASS有哪些参数: 可以对输入的张量进行 2D 卷积。 in_channels: 输入图片的 channel 数。 out_channels: 输出图片的 channel 数。 kernel_size: 卷积核的大小。 stride: 滑动的步长 ...
class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) in_channels(int) :输入信号的通道。在文本 ...
Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像。 先看一下接口定义: class torch.nn.Conv2d(in_channels ...