公式 非常有用的工具,可以把数据集的不同特征缩放到固定范围。 先从简单的说起,[0,1]缩放,公式 \(X_{scaled} = \frac{x-x_{min}}{x_{max}-x_{min}}\) MinMaxScaler可以缩放到任意范围[MIN,MAX],因此更一般化的公式 ...
import numpy as npfrom sklearn.preprocessing import MinMaxScalerdataset np.array , , , .astype float normalize the datasetscaler MinMaxScaler feature range , dataset scaler.fit transform dataset origi ...
2016-10-14 17:17 0 5490 推荐指数:
公式 非常有用的工具,可以把数据集的不同特征缩放到固定范围。 先从简单的说起,[0,1]缩放,公式 \(X_{scaled} = \frac{x-x_{min}}{x_{max}-x_{min}}\) MinMaxScaler可以缩放到任意范围[MIN,MAX],因此更一般化的公式 ...
MinMaxScaler 一、总结 一句话总结: MinMaxScaler是min、max归一化,使用的话先fit,然后再transform归一化操作,也可以合并为fit_transform 1、训练集的归一化方法为 scaler.fit_transform,验证集 ...
以通过preprocessing.MinMaxScaler类实现。 常用的最 ...
刚入手data science, 想着自己玩一玩kaggle,玩了新手Titanic和House Price的 项目, 觉得基本的baseline还是可以写出来,但是具体到一些细节,以至于到能拿到的出 ...
预处理的几种方法:标准化、数据最大最小缩放处理、正则化、特征二值化和数据缺失值处理。 知识回顾: p-范数:先算绝对值的p次方,再求和,再开p次方。 数据标准化:尽量将数据转化为均值为0,方 ...
1.概要 sklearn.preprocessing.OneHotEncoder,将类别变量、顺序变量转化为二值化的标志变量。 2. 解析 格式: 实例: 对于输入数组,每一行当做一个样本,每一列当做一个特征。 第一个特征,即第一列[0,1,0,1 ...
说明:num_words的参数设置,对应着sequences_to_matrix方法返回的arrray的shape[1],用于约束返回数组的第2个维度。对texts_to_sequences ...
在训练模型之前,我们通常都要对训练数据进行一定的处理。将类别编号就是一种常用的处理方法,比如把类别“男”,“女”编号为0和1。可以使用sklearn.preprocessing中的LabelEncoder处理这个问题。 作用 将n个类别编码为0~n-1之间的整数(包含0和n-1)。 例子 ...