上图是 Walter Rudin 所著的《数学分析原理》(Principles of Mathematical Analysis)里对施瓦茨不等式的一个简洁证明。因为跨页没有拍全,后页还有如下三行: Since each term in the first sum ...
证明 如果: 函数 y ax bx c 对任意x gt 时 y gt 函数图象在全部x轴上方,故二次方程判别式 b ac lt 即方程无实数解 即 b lt ac gt b lt ac 注意:上面g x A x B 中X B A 应该表示成 X B A 参考判别式: http: baike.baidu.com link url pwwiWoBpl yNww tA mbm tcZsIYGuw GSc ...
2016-07-18 09:52 0 4724 推荐指数:
上图是 Walter Rudin 所著的《数学分析原理》(Principles of Mathematical Analysis)里对施瓦茨不等式的一个简洁证明。因为跨页没有拍全,后页还有如下三行: Since each term in the first sum ...
柯西-施瓦茨不等式是一个在众多背景下都有应用的不等式,例如线性代数,数学分析,概率论,向量代数以及其他许多领域。它被认为是数学中最重要的不等式之一。此不等式最初于1821年被柯西提出,其积分形式在1859被布尼亚克夫斯基提出,而积分形式的现代证明则由施瓦兹于1888年给出。 ...
本文介绍几个常用的与期望有关的不等式。 1 Cauchy–Schwarz不等式 Cauchy–Schwarz不等式有许多形式,这里只介绍它的期望函数的形式。 Cauchy–Schwarz不等式: \[[\text{E}(XY)]^2 \leq \text{E}(X^2)\text{E ...
第一次用latex排个版,累死我了 ...
均值不等式 定义 均值不等式,同称平均值不等式,也可称为基本不等式。其内容为: \[H_n\leqslant G_n\leqslant A_n\leqslant Q_n \] 即 调和平均数 \(\leqslant\) 几何平均数 \(\leqslant\) 算术平均 ...
定理4.4 (切比雪夫不等式) 设随机变量 \(X\) 的期望和方差均存在,则对任意 \(\varepsilon > 0\),有 \[P(|X - WX| \geq \varepsilon) \leq \displaystyle\frac{DX}{\varepsilon ...
刷题遇到的证明题,一下想到了琴生不等式,主要是根据f``(x)>0【这里仅以>0为例】来联想步骤。 通过这个条件可以联系到: Taylor公式 f`单调增 凹函数 凹函数与切线作图形成的不等式 凹函数定义证明: 琴生不等式证明: ...
1、采用积分中值定理(适用于函数单调性已知的情况下)。 用积分中值定理将积分表达式转化为代数式。 2、对被积函数采用微分中值定理进行等值替换(适用于函数单调性未确定的情况下)。 将被积函数等值替 ...