数值分析第三章 常微分方程的差分方法


常微分方程的差分方法重点回顾:

  1. 差分方法是一类重要的数值解法,这类方法是要寻求一系列离散结点上的近似解h为步长。一般来说,假定h为定数。
  2. 能求解的常微分方程的条件。A.两个方程B.满足李普希兹条件C.f(x,y)适当光滑。这样可以保证解存在且唯一。
  3. 数值解法的第一步是设法消除其导数项,这项手续称“离散化”。由于差分是微分的近似计算,实现离散化的基本途径就是用差商来替代导数。
  4. 欧拉格式需要熟练掌握。
  5. 欧拉格式仅为一阶方法(证明是用泰勒公式)
  6. 隐式欧拉格式也是一阶方法需要掌握
  7. 两步欧拉格式:调用了前面的两步的信息,是一个二阶方法。
  8. 梯形格式需要掌握。实质上是欧拉格式和隐式欧拉格式的算术平均。
  9. 改进的欧拉格式:综合欧拉方法和梯形方法。先用欧拉方法求得一个初步的近似值,即为预报值。然后用它代替梯形方法yn+1进行计算。就得到了预报-校正系统。可以写成嵌套的方式。或者表示为平均化形式
  10. 龙格库塔方法(背四阶龙格库塔方法)
  11. 亚当姆预报-校正系统
  12. 欧拉方法是收敛的
  13. 欧拉方法是条件稳定的
  14. 隐式欧拉格式恒稳定(无条件稳定的)

下图是我对教材99页公式的证明

 

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM