EM 算法求解高斯混合模型python實現
注:本文是對《統計學習方法》EM算法的一個簡單總結。 1. 什么是EM算法? 引用書上的話: 概率模型有時既含有觀測變量,又含有隱變量或者潛在變量。如果概率模型的變量都是觀測變量,可以 ...
注:本文是對《統計學習方法》EM算法的一個簡單總結。 1. 什么是EM算法? 引用書上的話: 概率模型有時既含有觀測變量,又含有隱變量或者潛在變量。如果概率模型的變量都是觀測變量,可以 ...
單高斯分布模型SGM 高斯密度函數估計是一種參數化模型。有單高斯模型(Single Gaussian Model, SGM)和高斯混合模型(Gaussian mixture model,GMM)兩類 ...
一、高斯混合模型概述 1、公式 高斯混合模型是指具有如下形式的概率分布模型: 其中,αk≥0,且∑αk=1,是每一個高斯分布的權重。Ø(y|θk)是第k個高斯分布的概率密度,被稱為第k個分模 ...
斯坦福大學機器學習,EM算法求解高斯混合模型。一種高斯混合模型算法的改進方法---將聚類算法與傳統高斯混合模型結合起來的建模方法, 並同時提出的運用距離加權的矢量量化方法獲取初始值,並采用衡量相似度的 ...
1 極大似然估計 假設有如圖1的X所示的抽取的n個學生某門課程的成績,又知學生的成績符合高斯分布f(x|μ,σ2),求學生的成績最符合哪種高斯分布,即μ和σ2最優值是什么? 圖1 學生成 ...
EM算法有很多的應用: 最廣泛的就是GMM混合高斯模型、聚類、HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 ...