線性回歸(Linear Regression)
1. 前言 線性回歸形式簡單、易於建模,但卻蘊涵着機器學習中一些重要的基本思想。許多功能更為強大的非線性模型(nonlinear model)可在線性模型的基礎上通過引入層級結構或高維映射而得。此外 ...
1. 前言 線性回歸形式簡單、易於建模,但卻蘊涵着機器學習中一些重要的基本思想。許多功能更為強大的非線性模型(nonlinear model)可在線性模型的基礎上通過引入層級結構或高維映射而得。此外 ...
嶺回歸的原理: 首先要了解最小二乘法的回歸原理 設有多重線性回歸模型 y=Xβ+ε ,參數β的最小二乘估計為 當自變量間存在多重共線性,|X'X|≈0時,設想|X'X|給加上一個正常數矩陣 ...
線性回歸 Ridge 回歸 (嶺回歸) Ridge 回歸用於解決兩類問題:一是樣本少於變量個數,二是變量間存在共線性 RidgeCV:多個阿爾法,得出多個對應最佳的 ...
前言 近年來AI人工智能成為社會發展趨勢,在IT行業引起一波熱潮,有關機器學習、深度學習、神經網絡等文章多不勝數。從智能家居、自動駕駛、無人機、智能機器人到人造衛星、安防軍備,無論是國家級軍事設備還 ...
一.過擬合 建模的目的是讓模型學習到數據的一般性規律,但有時候可能會學過頭,學到一些噪聲數據的特性,雖然模型可以在訓練集上取得好的表現,但在測試集上結果往往會變差,這時稱模型陷入了過擬合,接下來造一 ...