《機器學習Python實現_01_線性模型_線性回歸_正則化(Lasso,Ridge,ElasticNet)》


一.過擬合

建模的目的是讓模型學習到數據的一般性規律,但有時候可能會學過頭,學到一些噪聲數據的特性,雖然模型可以在訓練集上取得好的表現,但在測試集上結果往往會變差,這時稱模型陷入了過擬合,接下來造一些偽數據進行演示:

import os
os.chdir('../')
from ml_models.linear_model import *
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#造偽樣本
X=np.linspace(0,100,100)
X=np.c_[X,np.ones(100)]
w=np.asarray([3,2])
Y=X.dot(w)
X=X.astype('float')
Y=Y.astype('float')
X[:,0]+=np.random.normal(size=(X[:,0].shape))*3#添加噪聲
Y=Y.reshape(100,1)
#擬合數據並可視化
lr=LinearRegression()
lr.fit(X[:,:-1],Y)
lr.plot_fit_boundary(X[:,:-1],Y)

png

目前看起來效果還是可以的,但如果加入幾個異常點,再看看效果呢

X=np.concatenate([X,np.asanyarray([[100,1],[101,1],[102,1],[103,1],[104,1]])])
Y=np.concatenate([Y,np.asanyarray([[3000],[3300],[3600],[3800],[3900]])])
lr=LinearRegression()
lr.fit(X[:,:-1],Y)
lr.plot_fit_boundary(X[:,:-1],Y)

png

二.正則化

可以看到,僅僅加入了幾個很離譜的異常點,就會對預測產生很大的影響,且偏離很遠,這在實際情況中是很常見的;通常可以通過對模型參數添加正則化約束來避免這種情況,使其不會太“飄”,做法是在loss函數中為權重\(w\)添加\(L_1\)或者\(L_2\)約束,借用上一節的公式推導,直接推出loss部分:

1.線性回歸中添加\(L_1\)約束稱為Lasso回歸,其損失函數如下:

\[L(w)=\sum_{i=1}^m(y_i-f(x_i))^2+\lambda||w||_1 \]

2.線性回歸中添加\(L_2\)約束稱為Ridge回歸,其損失函數如下:

\[L(w)=\sum_{i=1}^m(y_i-f(x_i))^2+\alpha||w||_2 \]

3.如果不太確定用\(L_1\)好,還是\(L_2\)好,可以用它們的組合,稱作ElasticNet,損失函數如下:

\[L(w)=\sum_{i=1}^m(y_i-f(x_i))^2+\lambda||w||_1+\alpha||w||_2 \]

可以發現通過調整超參,可以控制\(w\)的大小,如果\(\lambda\)\(\alpha\)設置很大,\(w\)會被約束的很小,而如果\(\alpha\)\(\lambda\)設置為0,等價於原始的不帶正則項的線性回歸;通常可以通過交叉驗證,根據驗證集上的表現來設置一個合適的超參;接下來在上一節線性回歸代碼的基礎上實現Lasso,Ridge,ElasticNet模型,另外設置兩個參數l1_ratio以及l2_ratio,分別用來控制\(L_1\)\(L_2\)的loss部分的權重

三.代碼實現

class LinearRegression(object):
    def __init__(self, fit_intercept=True, solver='sgd', if_standard=True, epochs=10, eta=1e-2, batch_size=1,
                 l1_ratio=None, l2_ratio=None):
        """
        :param fit_intercept: 是否訓練bias
        :param solver:
        :param if_standard:
        """
        self.w = None
        self.fit_intercept = fit_intercept
        self.solver = solver
        self.if_standard = if_standard
        if if_standard:
            self.feature_mean = None
            self.feature_std = None
        self.epochs = epochs
        self.eta = eta
        self.batch_size = batch_size
        self.l1_ratio = l1_ratio
        self.l2_ratio = l2_ratio
        # 注冊sign函數
        self.sign_func = np.vectorize(utils.sign)

    def init_params(self, n_features):
        """
        初始化參數
        :return:
        """
        self.w = np.random.random(size=(n_features, 1))

    def _fit_closed_form_solution(self, x, y):
        """
        直接求閉式解
        :param x:
        :param y:
        :return:
        """
        if self.l1_ratio is None and self.l2_ratio is None:
            self.w = np.linalg.pinv(x).dot(y)
        elif self.l1_ratio is None and self.l2_ratio is not None:
            self.w = np.linalg.inv(x.T.dot(x) + self.l2_ratio * np.eye(x.shape[1])).dot(x.T).dot(y)
        else:
            self._fit_sgd(x, y)

    def _fit_sgd(self, x, y):
        """
        隨機梯度下降求解
        :param x:
        :param y:
        :param epochs:
        :param eta:
        :param batch_size:
        :return:
        """
        x_y = np.c_[x, y]
        # 按batch_size更新w,b
        for _ in range(self.epochs):
            np.random.shuffle(x_y)
            for index in range(x_y.shape[0] // self.batch_size):
                batch_x_y = x_y[self.batch_size * index:self.batch_size * (index + 1)]
                batch_x = batch_x_y[:, :-1]
                batch_y = batch_x_y[:, -1:]

                dw = -2 * batch_x.T.dot(batch_y - batch_x.dot(self.w)) / self.batch_size

                # 添加l1和l2的部分
                dw_reg = np.zeros(shape=(x.shape[1] - 1, 1))
                if self.l1_ratio is not None:
                    dw_reg += self.l1_ratio * self.sign_func(self.w[:-1]) / self.batch_size
                if self.l2_ratio is not None:
                    dw_reg += 2 * self.l2_ratio * self.w[:-1] / self.batch_size
                dw_reg = np.concatenate([dw_reg, np.asarray([[0]])], axis=0)
                dw += dw_reg
                self.w = self.w - self.eta * dw

    def fit(self, x, y):
        # 是否歸一化feature
        if self.if_standard:
            self.feature_mean = np.mean(x, axis=0)
            self.feature_std = np.std(x, axis=0) + 1e-8
            x = (x - self.feature_mean) / self.feature_std
        # 是否訓練bias
        if self.fit_intercept:
            x = np.c_[x, np.ones_like(y)]
        # 初始化參數
        self.init_params(x.shape[1])
        # 訓練模型
        if self.solver == 'closed_form':
            self._fit_closed_form_solution(x, y)
        elif self.solver == 'sgd':
            self._fit_sgd(x, y)

    def get_params(self):
        """
        輸出原始的系數
        :return: w,b
        """
        if self.fit_intercept:
            w = self.w[:-1]
            b = self.w[-1]
        else:
            w = self.w
            b = 0
        if self.if_standard:
            w = w / self.feature_std.reshape(-1, 1)
            b = b - w.T.dot(self.feature_mean.reshape(-1, 1))
        return w.reshape(-1), b

    def predict(self, x):
        """
        :param x:ndarray格式數據: m x n
        :return: m x 1
        """
        if self.if_standard:
            x = (x - self.feature_mean) / self.feature_std
        if self.fit_intercept:
            x = np.c_[x, np.ones(shape=x.shape[0])]
        return x.dot(self.w)

    def plot_fit_boundary(self, x, y):
        """
        繪制擬合結果
        :param x:
        :param y:
        :return:
        """
        plt.scatter(x[:, 0], y)
        plt.plot(x[:, 0], self.predict(x), 'r')

Lasso

lasso=LinearRegression(l1_ratio=100)
lasso.fit(X[:,:-1],Y)
lasso.plot_fit_boundary(X[:,:-1],Y)

png

Ridge

ridge=LinearRegression(l2_ratio=10)
ridge.fit(X[:,:-1],Y)
ridge.plot_fit_boundary(X[:,:-1],Y)

png

ElasticNet

elastic=LinearRegression(l1_ratio=100,l2_ratio=10)
elastic.fit(X[:,:-1],Y)
elastic.plot_fit_boundary(X[:,:-1],Y)

png

將sign函數整理到ml_models.utils中


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM