原文:素數篩(埃氏篩法與歐拉篩)

素數篩,其實是將一堆數中的合數給篩掉,留下素數的一個過程。求某個大小范圍內的素數個數,是用到素數篩的最最基礎的問題。 首先要給出關於素數的最基本的知識:判斷單個數是否為素數。 判斷一個整數n是否為素數 首先i從 開始枚舉到 sqrt n ,然后一旦n可以被i整除,就返回false,然后如果i枚舉完了,n都沒能整除i,那就證明是素數,返回true。 為啥判斷到 sqrt n 就結束了呢 其實這個問題 ...

2021-08-13 21:39 0 134 推薦指數:

查看詳情

篩法(素數)

篩法:給定一個正整數n(n<=10^6),問n以內有多少個素數? 做法:做法其實很簡單,首先將2到n范圍內的整數寫下來,其中2是最小的素數。將表中所有的2的倍數划去,表中剩下的最小的數字就是3,他不能被更小的數整除,所以3是素數。再將表中所有的3的倍數划去……以此類推 ...

Mon Jan 25 23:00:00 CST 2016 0 8595
素數篩法詳解:素數

當數據量很大時,我們不能一個一個去判斷每個數是否為素數,那么我們可以采用來做 由於會存在某個合數多次被的情況,所以 的核心思想就是:讓每個合數只被它的的最小質因子篩選一次,沒有重復 :時間復雜度為O(n),所以也稱為線性,但只能到1e8這么大 ...

Wed Oct 07 03:58:00 CST 2020 0 561
素數篩法函數(函數,線性

前言 蒟蒻最近准備狂補數學啦TAT 基於素數,可以同時快速求出函數。於是蒟蒻准備從這里入手,整理一下實現的思路。 素數及其一種改進寫法 傳統素數的做法()是,利用已知的素數,去掉含有此質因子的合數,十分巧妙。由於不是本文的重點,就只貼一下代碼吧 復雜度不會證 ...

Thu Apr 26 07:04:00 CST 2018 0 1550
【學習筆記】篩法(線性素數

算法介紹:篩法是在O(N)線性時間內實現素數篩選的優秀算法。 算法思路:總體上與Eratosthenes篩法類似,也是用較小的數去較大的合數。 關鍵思路在於:每一個合數都保證是被其最小的質因子去的,下簡稱稱該條件為線性條件。 結合代碼分析: 對每一個數i,無論其是否為質數 ...

Mon Oct 25 02:20:00 CST 2021 0 1121
篩法(素數) --目前我學過的找素數最快的方法

篩法:給定一個正整數n(n<=10^6),問n以內有多少個素數? 做法:做法其實很簡單,首先將2到n范圍內的整數寫下來,其中2是最小的素數。將表中所有的2的倍數划去,表中剩下的最小的數字就是3,他不能被更小的數整除,所以3是素數。再將表中所有的3的倍數划去……以此類推 ...

Mon Jun 17 20:56:00 CST 2019 0 904
線性素數

線性是一個很基礎的算法,但是我一直沒學。直到一次考試,因為O(n√n)會超時,用了表,結果被卡了代碼長度,於是開始學習。 算法思路: 對於每一個數(無論質數合數)x,掉所有小於x最小質因子的質數乘以x的數。比如對於77,它分解質因數是7*11,那么掉所有小於7的質數*77, ...

Wed Oct 10 00:50:00 CST 2018 0 5742
線性

昨天的考試跪的一塌糊塗:第一題水過,第二題帶WA的朴素,最后題忘了特判左端點全跪,分數比起預計得分整整打了個對折啊! 步入正題:線性) 一般的篩法(PPT里叫托斯特尼篩法,名字異常高貴)的效率是O(NlglgN)(其實很接近O(n)啊!),對於一些例如N=10000000的殘暴 ...

Sat Aug 03 23:02:00 CST 2013 5 18904

質數 也稱線性 它比時間復雜度為 \(O(n\log\log n)\) 的更優,因為會有重。 保證每個合數只會被它的最小質因數掉,所以每個數只會被一次。 時間復雜度 \(O(n)\) 函數 特殊地,對於一個質數 \(p ...

Sun Nov 14 05:35:00 CST 2021 0 328
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM