文章來自Microstrong的知乎專欄,僅做搬運。原文鏈接 1. 權重衰減(weight decay) L2正則化的目的就是為了讓權重衰減到更小的值,在一定程度上減少模型過擬合的問題,所以權重衰減也叫L2正則化。 1.1 L2正則化與權重衰減系數 L2正則化就是在代價函數后面再加上 ...
概念 之前一直對 權重衰減 和 學習率衰減 存在誤解,我甚至一度以為它們是同一個東西,以至於使用的時候感覺特別困惑。在優化器中使用了 權重衰減 ,竟然發現模型的准確率下降了,假如它們是同一個東西,至少應該是學得慢,而不是學壞了。因此,專門查了一下資料,了解兩者的區別,這篇隨筆做一下記錄。 權重衰減 權重衰減 weight decay ,是一種正則化的方法,應用了權重衰減的神經網絡,最終某些權重會變 ...
2021-07-24 22:49 1 298 推薦指數:
文章來自Microstrong的知乎專欄,僅做搬運。原文鏈接 1. 權重衰減(weight decay) L2正則化的目的就是為了讓權重衰減到更小的值,在一定程度上減少模型過擬合的問題,所以權重衰減也叫L2正則化。 1.1 L2正則化與權重衰減系數 L2正則化就是在代價函數后面再加上 ...
1.介紹 轉自:https://blog.csdn.net/program_developer/article/details/80867468 在訓練到一定階段后,學習率可能會產生震盪,但是一開始用小的學習率的話,訓練速度會很慢。 學習率衰減(learning rate ...
...
過擬合現象,即模型的訓練誤差遠⼩於它在測試集上的誤差。雖然增⼤訓練數據集可能會減輕過擬合,但是獲取額外的訓練數據往往代價⾼昂。本節介紹應對過擬合問題的常⽤⽅法:權重衰減(weight decay)。 一、方法 權重衰減等價於 范數正則化(regularization ...
Tensorflow實現各種學習率衰減 覺得有用的話,歡迎一起討論相互學習~ 參考文獻 Deeplearning AI Andrew Ng Tensorflow1.2 API 學習率衰減(learning rate decay) 加快學習算法的一個辦法就是隨時間慢慢減少 ...
前言 今天用到了PyTorch里的CosineAnnealingLR,也就是用余弦函數進行學習率的衰減。 下面講講定義CosineAnnealingLR這個類的對象時輸入的幾個參數是什么,代碼示例就不放了。 正文 optimizer 需要進行學習率衰減的優化器變量 ...
深度學習中常常會存在過擬合現象,比如當訓練數據過少時,訓練得到的模型很可能在訓練集上表現非常好,但是在測試集上表現不好. 應對過擬合,可以通過數據增強,增大訓練集數量.我們這里先不介紹數據增強,先從模型訓練的角度介紹常用的應對過擬合的方法. 權重衰減 權重衰減等價於 \(L_2\) 范數正則化 ...
權重衰減是應對過擬合問題的常用方法。 \(L_2\)范數正則化 在深度學習中,我們常使用L2范數正則化,也就是在模型原先損失函數基礎上添加L2范數懲罰項,從而得到訓練所需要最小化的函數。 L2范數懲罰項指的是模型權重參數每個元素的平方和與一個超參數的乘積。如:\(w_1\),\(w_2 ...