
#coding:utf-8 #設損失函數 loss=(w+1)^2,令w初值是常數10.反向傳播就是求最優w,即求最小loss對應的w值 #使用指數衰減學習率,在迭代初期得到較高的下降速度,可以在較小的訓練輪數下取得更有效收斂度 import tensorflow as tf LEARNING_RATE_BASE = 0.1 #最初學習率 LEARNING_RATE_DECAY = 0.99 #學習率衰減率 LEARNING_RATE_STEP = 1 #喂入多少輪BATCH_SIZE后,更新一次學習率,一般設為:總樣本數/BATCH_SIZE #運行了幾輪BATCH_SIZE的計數器,初值給0,設為不被訓練 global_step = tf.Variable(0, trainable=False) #定義指數下降學習率 learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,LEARNING_RATE_STEP, LEARNING_RATE_DECAY, staircase=True) #定義待優化參數,初值給10S w = tf.Variable(tf.constant(5,dtype=tf.float32)) #定義損失函數loss loss = tf.square(w+1) train_step = tf.train.GradientDescentOptimizer(learing_rate).minimize(loss, global_step=global_step) #生成會話,訓練40輪 with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) for i in range(40): sess.run(train_step) learing_rate_val = sess.run(learning_rate) global_step_val = sess.run(global_step) w_val = sess.run(w) loss_val = sess.run(loss) print "After %s steps: global_step is %f, w is %f, learning_rate is %f, loss is %f." % (i,global_step_val,w_val,learing_rate_val,loss_val)

