方陣的變換有以下幾種:等價變換:方陣A右乘一個滿秩方陣P,左乘個滿秩方陣Q,P和Q沒有任何約束關系,這就是等價變換。等價變換是保秩變換。當對P和Q有一定約束時又有一些特殊的變換。合同變換:方陣A右乘一個滿秩方陣P,左乘個方陣Q=P的轉置,這就是合同變換。對稱陣的合同變換永遠是對稱陣,標准型為對角陣 ...
采用拉格朗日配方法將二次型轉化為標准型的方法較為復雜,且不利於計算高階二次型。因此這里給出二次型化標准型的正交變換法。 正交變換法步驟: 將二次型表達為矩陣形式f x TAx,求出矩陣A。 求出A的所有特征值 , ,..., n。 求出對應於特征值的特征向量a ,a ,...,an。 將特征向量正交化 單位化,得b ,b ,...,bn,記C b ,b ,...,bn 。 作正交變換x Cy,則得 ...
2020-10-18 10:49 0 2409 推薦指數:
方陣的變換有以下幾種:等價變換:方陣A右乘一個滿秩方陣P,左乘個滿秩方陣Q,P和Q沒有任何約束關系,這就是等價變換。等價變換是保秩變換。當對P和Q有一定約束時又有一些特殊的變換。合同變換:方陣A右乘一個滿秩方陣P,左乘個方陣Q=P的轉置,這就是合同變換。對稱陣的合同變換永遠是對稱陣,標准型為對角陣 ...
「摘自劉二根和謝霖銓主編的《線性代數》」 二次型及其標准型 正定二次型,正定矩陣 ...
將學習到什么 本節討論關於實矩陣的實形式的 Jordan 標准型,也討論關於復矩陣的另外一種形式的 Jordan 標准型,因為它在與交換性有關的問題中很有用. 實 Jordan 標准型 假設 \(A \in M_n(\mathbb{R})\), 所以任何非實的特征值必定成對共軛出現 ...
將學習到什么 就算兩個矩陣有相同的特征多項式,它們也有可能不相似,那么如何判斷兩個矩陣是相似的?答案是它們有一樣的 Jordan 標准型. Jordan 標准型定理 這節目的:證明**每個復矩陣都與一個本質上唯一的 Jordan 矩陣相似**. 分三步證明這個結論。其中前兩步 ...
將學習到什么 練習一下如何把一個矩陣化為 Jordan 標准型. 將矩陣化為 Jordan 標准型需要三步: 第一步 求出矩陣 \(A \in M_n\) 全部的特征值 \(\lambda_1,\cdots,\lambda_t\), 假設有 \(t\) 個不同的特征值 ...
Jordan標准型矩陣的定義很簡單,矩陣比較多,不好打,略過。 Jordan標准型與最小多項式有密切關系。 定理1 若矩陣\(J\)為矩陣\(A\)的若當標准型矩陣,\(\lambda\)是任意數字,則對一切正整數\(n\),有 \(Rank(A-\lambda I)^k = Rank(J- ...
標准Controller 上一篇通過一個簡單的例子,編寫了一個controller-manager,以及一個極簡單的controller。從而對controller的開發有個最基本的認識,但是細心觀察前一篇實現的controller僅僅是每次全量獲取了所有資源,雖然都是從緩存中獲取速度是比較 ...
也可以用特征值的方式求,重根如果沒有重述個無關的向量,重根形成Jordan塊。(幾何重樹和代數形式) ...