L1和L2正則都是比較常見和常用的正則化項,都可以達到防止過擬合的效果。L1正則化的解具有稀疏性,可用於特征選擇。L2正則化的解都比較小,抗擾動能力強。 L2正則化 對模型參數的L2正則項為 即權重向量中各個元素的平方和,通常取1/2。L2正則也經常被稱作“權重衰減 ...
機器學習中,如果參數過多,模型過於復雜,容易造成過擬合 overfit 。即模型在訓練樣本數據上表現的很好,但在實際測試樣本上表現的較差,不具備良好的泛化能力。為了避免過擬合,最常用的一種方法是使用使用正則化,例如 L 和 L 正則化。但是,正則化項是如何得來的 其背后的數學原理是什么 L 正則化和 L 正則化之間有何區別 本文將給出直觀的解釋。 . L 正則化直觀解釋 L 正則化公式非常簡單,直 ...
2020-09-17 18:11 0 1022 推薦指數:
L1和L2正則都是比較常見和常用的正則化項,都可以達到防止過擬合的效果。L1正則化的解具有稀疏性,可用於特征選擇。L2正則化的解都比較小,抗擾動能力強。 L2正則化 對模型參數的L2正則項為 即權重向量中各個元素的平方和,通常取1/2。L2正則也經常被稱作“權重衰減 ...
過節福利,我們來深入理解下L1與L2正則化。 1 正則化的概念 正則化(Regularization) 是機器學習中對原始損失函數引入額外信息,以便防止過擬合和提高模型泛化性能的一類方法的統稱。也就是目標函數變成了原始損失函數+額外項,常用的額外項一般有兩種,英文稱作 ...
1. 為什么要使用正則化 我們先回顧一下房價預測的例子。以下是使用多項式回歸來擬合房價預測的數據: 可以看出,左圖擬合較為合適,而右圖過擬合。如果想要解決右圖中的過擬合問題,需要能夠使得 $ x^3,x^4 $ 的參數 $ \theta_3,\theta_4 $ 盡量滿足 ...
一、概括: L1和L2是正則化項,又叫做罰項,是為了限制模型的參數,防止模型過擬合而加在損失函數后面的一項。 二、區別: 1.L1是模型各個參數的絕對值之和。 L2是模型各個參數的平方和的開方值。 2.L1會趨向於產生少量的特征,而其他的特征都是0. 因為最優 ...
一、范數的概念 向量范數是定義了向量的類似於長度的性質,滿足正定,齊次,三角不等式的關系就稱作范數。 一般分為L0、L1、L2與L_infinity范數。 二、范數正則化背景 1. 監督機器學習問題無非就是“minimizeyour error while ...
稀疏性表示數據中心0占比比較大 引西瓜書中P252原文: 對於損失函數后面加入懲罰函數可以降低過擬合的風險,懲罰函數使用L2范數,則稱為嶺回歸,L2范數相當與給w加入先驗,需要要求w滿足某一分布,L2范數表示數據服從高斯分布,而L1范數表示數據服從拉普拉斯分布。從拉普拉斯函數和高斯 ...
作為損失函數 L1范數損失函數 L1范數損失函數,也被稱之為平均絕對值誤差(MAE)。總的來說,它把目標值$Y_i$與估計值$f(x_i)$的絕對差值的總和最小化。 $$S=\frac{1}{N}\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范數損失函數 ...
...